C Derivation of ¢q,, r,, and s,

Derivation of ¢, and r,. Let T" = q(1— f,)v—qplogq and T° = ¢(f,v — p) denote

the two terms in the definition of r,:

To = max min {q(1 — f,)v — gplogq, WU —

wmenax - min{g(l = fa)v —gplogg, q(fa¥ —p)}
It is readily verified that T increases in price p whereas 7 decreases in p. Moreover,
T* < T° when p =0 and T" > T° when p = f,v. Hence, for any fixed ¢, min{7T",T7°}
is achieved by the value of p which satisfies T" = T, that is:

L afy
b= 1—logq

Substituting this value of p into T" and T°, we have

«
T =T°=qgf 01— — ). 1
ot (1- =) (17)

This term (17) is concave in ¢ and increases in ¢ at ¢ = 0. Moreover, if a < 1/2, this
term (17) increases in ¢ also at ¢ = 1. In this case, the maximum is achieved at ¢ = 1
S0:

go =1, and r, = ;_av:(l—fa)v.

If @« > 1/2, the term (17) decreases in ¢ at ¢ = 1 so the maximum is achieved at an

interior ¢. In this case, g, is given by setting the derivative of (17) with respect to ¢

to zero, so:
a++/a(a+4)
aJr\/m (2+a_ \/Oz(Oé—l—4)> 61——+ —2( +4
o = el” 2 , and r, = 2.
22— a)

Derivation of s,. The value of s, is given by:

Sa = (sup{q(fa® — p) : q(1 = fa)v — qplogq > ra, (q,p) € [0,1] x [0, fo0]})*
= (sup{T°:T" > ra, (q,p) € [0,1] x [0, fa@]})J’.

We first explain that the value of s, is at most r,. Given the definition of r,,
min{7™, T°} < rq for any (g, p) € [0,1] % [0, f40]. Hence, for any (q,p) € [0,1] x [0, fa?]
such that T° > r,, it holds that T* < r,. The value of s, is the supremum of such 7,



so it is at most 7.

We next argue that for o > 1/2, the value of s, equals r,. Consider the quantity-

price pair (qa, 1_0‘1{1‘;; + 5), which is in [0, 1] x [0, fo0] for small enough ¢ > 0. The

value of T under this pair is strictly above r,, because (i) 7" equals 7, under the pair

(qa, 1?{;‘;;), and (ii) T" is strictly increasing in p for any ¢ € (0,1). As € goes to zero,

the value of T° under the pair <qa, 1_0‘1’2 agza + 8) goes to 7,.

We next consider the case in which a@ < 1/2. The condition T > r, is satisfied if

and only if ¢ € (0,1) and

(a_l){} Ta
— TIa 1—
a—2 q _ q
> 02 41— ¢, : 18
p> = (L S (18)

The lower bound in (18) decreases in ¢, so it is at least (1 — f,)v. Since (1 — f,)0 = fo0
for « = 0, it follows that there exists no (¢,p) € [0,1] x [0, fo0] such that T > r,.
Hence, for a = 0, s, equals zero. For a € (0,1/2], since T° decreases in price p, the
supremum of 7 is achieved when p approaches the lower bound in (18). Substituting
this lower bound into 7, we have:

7o W1 -a)(1-q) +qlogQ)’ for g € (0,1).

(2—a)loggq

This term is convex in g and equals zero when ¢ = 0, so the supremum of 7 is achieved

when ¢ approaches 1, and is equal to:

«

5ol = afav, for a € (0,1/2].

D An example that illustrates the role of (—d(q))

Suppose that P = 1 and that P(z) = 1if 2 < b and P(z) = 0 if 2 > b for some
parameter b € (0,1). Suppose that o =0, so fo = 1/2. Then, d(q) = ¢/2 for ¢ < b and
d(q) = b/2 for ¢ > b. There is an optimal policy with s being zero. Substituting s = 0
and d(q) into the optimal policy (9), we reduce the policy to:

, if ¢ <0,

p(q,p) = ' . '
+m1n{p,§} (q—0), ifg>h.

NS NI



According to this policy, for the first b units the firm produces, its average revenue
is 1/2, which is a fraction fy of the value to a consumer. For the remaining units,
about which the regulator does not know the value to a consumer, the firm gets the
market price p per unit, capped by a fraction f; of the highest possible value to a
consumer. If the firm chooses (¢,p) = (1,0), the total consumer value ©(1,0) that the
firm proves it has created is b. However, the regulator only gives the firm b/2 instead
of min { foV(1),0(1,0)} = min{1/2,b}.
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