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Abstract

We study priority-based allocation with strategic intermediaries. In the U.S. trans-

plant market, organs are offered sequentially to patients ranked by priority, but trans-

plant centers—not patients—make acceptance decisions. Centers strategically bypass

high-priority patients to secure better matches, creating a wedge between formal and

real allocation. We introduce the priority adherence index to measure this wedge and

analyze how market conditions shape it through three forces: pool thinning, batch

shortening, and strategic delay. Finally, we show that a simultaneous priority-proposal

rule is strategically equivalent to the current sequential-offer rule but avoids costly

delays, offering a faster practical alternative.

JEL: D47, D82, I11, D44, L13

Keywords: priority-based systems, strategic intermediaries, market design, market
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1 Introduction

High-stakes resources are often allocated through priority-based systems in settings such

as public housing and school seats. In deceased-donor organ allocation, for example, an
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organ is offered sequentially to patients in priority order. In theory, the mechanics are

straightforward: the resource is offered down a ranked list until a candidate accepts. When

a candidate is reached, they evaluate the match and accept if they find it desirable. The

resource would therefore go to the highest-priority candidate willing to accept it.

In practice, however, a key institutional feature complicates this picture: intermediaries

assess matches and decide on behalf of candidates. For instance, every patient needing a

deceased-donor organ must be listed with and managed by a transplant center, typically a

hospital division. Organ offers are routed to centers rather than patients, and centers can

evaluate organ-patient match quality. It is both permitted and common for centers to reject

offers without informing patients (Husain et al., 2025).

Transplant centers face different incentives than individual patients. Each center man-

ages multiple patients, so rejecting an offer for one preserves the option to accept it for

another of its patients. Centers are also monitored on center-level performance measures,

such as transplant outcomes (CMS, 2007; Ng, 2025). These incentives can motivate centers

to bypass patients who would individually accept, in order to transplant a patient with better

expected outcomes. This ability to bypass is especially powerful when a center has multiple

consecutive patients on the ranked list—a patient batch—since the center can select from

the batch without risking losing the organ to another center. Recent evidence documents

aggressive bypassing of higher-priority patients, raising public concerns about whether the

system respects patients’ priority rankings (King et al., 2023; NYT, 2025).

This paper analyzes priority-based systems with strategic intermediaries. Focusing on

the U.S. organ transplant market, we investigate three questions. First, how does strategic

intermediation affect adherence to priority rankings and allocation outcomes? Second, how

do market concentration and competition among transplant centers shape these effects?

Finally, we use our model to compare alternative allocation rules and evaluate policy reforms.

We model a market with k transplant centers; center j serves a share sj of patients. The
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distribution of market shares captures market structure. When an organ becomes available,

it is offered sequentially to n patients in priority order, from patient 1 (highest priority) to

patient n. Each patient is affiliated with one center, with affiliation to center j occurring

independently with probability sj. Thus, in expectation, larger centers have more patients

on the list than smaller centers. Once patients’ affiliations are realized, each center observes

the match values and priority positions of its own patients, but not other patients’ match

values or affiliations. When the offer reaches patient i, their center either accepts on the

patient’s behalf or passes to the next patient. If a center accepts the organ for one of its

patients, its payoff equals that patient’s match value; otherwise, its payoff is zero.

As a starting point, suppose there is no intermediation: patients observe their match

values and decide whether to accept. A patient accepts if and only if their match value

is positive, so the organ goes to the highest-priority patient among those with positive

values. We call this outcome formal allocation, as it reflects the conventional expectation of

a priority system. By contrast, we call the equilibrium outcome under intermediation real

allocation. When real allocation differs from formal allocation, justified envy arises. We thus

introduce the priority adherence index as the probability that the highest-priority patient

among those with positive values obtains the organ, conditional on the organ being allocated

to some patient. Equivalently, the index is the probability that no justified envy arises.

Consider first a monopoly center. Without competition, the center cannot lose the organ

to a rival and can choose any of its n patients. It therefore accepts for the patient with the

highest match value, provided that value is positive. This strategy maximizes realized match

value but drives the priority adherence index far below one; indeed, internal reallocation

makes patient priorities irrelevant. When match values are always positive, the index falls

to 1/n, the probability that the highest-priority patient happens to have the highest match

value.

With competition, centers face a risk absent under monopoly: losing the organ to a rival.
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Whether the risk is present depends on the sequence of patient affiliations. Within a patient

batch—a run of consecutive patients affiliated with the same center—the center can pass

the offer freely, reaching for its highest-valued patient within that batch without risk of loss.

However, when the next patient belongs to a rival center, passing the organ becomes risky

because the rival may accept it. This risk raises the cost of bypassing high-priority patients

and induces closer adherence to priority. When match values are always positive, centers

avoid this risk by never passing the offer to rivals. As a result, the center that owns patient 1

accepts the organ for its highest-valued patient in the initial batch. As the number of centers

increases, consecutive patients become less likely to share the same affiliation, shortening the

expected length of each batch. This batch-shortening effect increases the probability that the

highest-priority patient obtains the organ. Competition thus increases priority adherence;

as the number of centers grows large, the priority adherence index approaches one and the

market outcome coincides with the formal allocation.

When match values can be negative, a new strategic margin emerges: a center may pass

the organ to a rival even when the current patient yields a positive payoff. The reason is that

a rival center rejects with positive probability—for example, when all of its patients have

negative match values—so passing does not necessarily forfeit the organ; it may return after

circulating through rivals. This can create a priority-value tradeoff for the center currently

holding the offer: accept now for a sure but low positive match, or delay in the hope that the

organ returns for a lower-priority but higher-value patient. We call the latter choice strategic

delay. It arises precisely when organs are sufficiently selective—i.e., when negative match

values occur often enough—so that rivals reject frequently enough.

An increase in the probability of negative match values—making the organ more selective—

affects priority adherence through two opposing forces. The first is a pool thinning effect: as

the pool of willing acceptors shrinks, the highest-priority patient among them becomes more

likely to obtain the organ, thereby improving priority adherence. The second is the strategic

4



delay discussed above, which encourages centers to bypass high-priority patients with low

positive values to pursue higher match values deeper in the priority list. This behavior de-

presses priority adherence. We show that the interaction of these two forces can cause the

priority adherence index to be non-monotonic in the probability of negative match values.

Recent policy changes have expanded the geographic scope of competition for organs,

but they also amplify a binding operational constraint: on average, a transplant must oc-

cur within roughly 20 hours after recovery. Under this time pressure, organ procurement

organizations (OPOs) have increasingly relied on open offers, in which an organ is routed

to a selected center and that center can allocate it to any of its patients. The use of open

offers has risen sharply, from about 2% to 19%. But this expedient comes at a cost: open

offers circumvent the priority list, raising concerns about fairness (NYT, 2025). This mo-

tivates interest in alternative market designs that preserve speed while improving priority

adherence. One proposal is a priority-proposal rule, under which each center is invited to

propose at most one patient and the organ is awarded to the highest-priority patient among

those proposed (Henson et al., 2026). Despite the fundamental shift from a dynamic, se-

quential procedure to a simultaneous proposal process, we show that this rule is strategically

equivalent to the current sequential-offer rule. However, by avoiding the delays inherent in

contacting centers one by one, it can deliver the same incentives with less wasted time, and

thus merits serious consideration.

1.1 Related literature

Our work builds on the conceptual foundation of Aghion and Tirole (1997), who distinguish

between formal authority (the contractual right to decide) and real authority (effective con-

trol driven by information). We extend this duality to a market design setting. We define

formal allocation as the benchmark outcome if candidates observed match values and decided

for themselves. In contrast, real allocation is the equilibrium outcome induced by strategic
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intermediaries who hold effective control. By introducing a tractable model of market struc-

ture, we explore how intermediary concentration and competition shape the wedge between

formal and real allocation.

Agarwal and Budish (2021, p. 69) argue that “a holistic study of markets requires ana-

lyzing both market design and market power,” and observe that “with the notable exception

of auction markets and a handful of examples discussed in this chapter, these two issues

have largely been studied independently.” We answer this call with a framework integrating

market design and market power in the transplant market, which is amenable to analyzing

alternative designs and how market outcomes respond to policy reforms.

We contribute to the literature on transplant centers’ strategic behavior. Munoz-Rodriguez

and Schummer (2025) study an allocation policy that prioritizes patients who take certain

treatments. They compare settings in which patients choose their own treatment versus

settings in which centers do, and show that greater market power can improve welfare by

better targeting resources. Like our paper, they model centers deciding on patients’ behalf

and study how market structure shapes equilibrium outcomes. However, whereas they ana-

lyze the tradeoff between better resource targeting and distorting treatment choice, we focus

on acceptance decisions and the tradeoff between priority adherence and allocation value.

Chan and Roth (2024) observe that centers cherry-pick the safest transplants because they

are penalized for poor outcomes, while OPOs avoid recovering marginal organs because they

are penalized for discards. Using a two-player laboratory experiment between one OPO and

one center, they show that holistic regulation—rewarding both parties for health outcomes

across the entire patient pool—increases organ recovery and appropriate transplants relative

to fragmented regulation. Although we do not explicitly model OPOs, their increasing re-

liance on open offers to avoid discards motivates our advocacy for the priority-proposal rule

over the current sequential-offer rule.

Finally, we introduce the priority adherence index to quantify how often real allocation
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coincides with formal allocation. The index is closely related to the property of “no justified

envy” in the school-choice literature (Abdulkadiroglu and Sönmez, 2003), as it measures

the probability that this property holds. Less justified envy is a fairness criterion in this

literature, motivating the search for efficient mechanisms that reduce justified envy (e.g.,

Abdulkadiroglu et al., 2020; Abdulkadiroglu and Grigoryan, 2021). Abdulkadiroglu et al.

(2020) show that, in many-to-one matching, top trading cycles admits less justified envy

than serial dictatorship in an average sense when priorities are drawn uniformly at random.

Our priority adherence index also admits an average interpretation, but with the relevant

distribution determined by the market structure and the match value distribution rather

than by a uniform prior.

2 Model

Setup. Consider a setting with k ⩾ 1 transplant centers and n ⩾ 2 patients competing

for a single organ. Let xi denote the match value between patient i and the organ, drawn

independently from a distribution on [−1, 1] with PDF f and CDF F . Let x = (x1, . . . , xn)

denote the vector of match values. We classify the organ as universal if F (0) = 0, meaning

all match values are strictly positive. Conversely, it is selective if F (0) ∈ (0, 1), implying

some match values may be negative. Throughout, when we refer to a positive match value,

we mean strictly greater than zero.

Let s = (s1, . . . , sk) denote the market shares of the centers, where sj > 0 and
∑k

j=1 sj =

1. Each patient is independently affiliated with center j with probability sj, which induces

a random affiliation mapping c : {1, . . . , n} → {1, . . . , k}. Under this affiliation, center c(i)

decides whether to accept the organ on behalf of patient i. For parts of the analysis, we as-

sume uniform market shares, meaning s1 = · · · = sk = 1/k, although the realized affiliation c
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may still be imbalanced due to randomness.1

Allocation mechanism. The OPO allocates the organ using a sequential-offer rule where

lower-indexed patients have higher priority. The organ is first offered to center c(1) for

patient 1. If rejected, the offer proceeds to center c(2) for patient 2, and so on, until a center

accepts or all offers are declined. If patient i receives the organ, their center c(i) receives a

payoff of xi; all other centers receive zero. Figure 1 illustrates this process for n = 5 patients.

At each decision node hi (where the organ is offered to center c(i) for patient i), center c(i)

either accepts or rejects.

h1 h2 h3 h4 h5

c(1) rejects c(2) rejects c(3) rejects c(4) rejects

c(1) accepts c(2) accepts c(3) accepts c(4) accepts c(5) accepts

organ discarded
c(5) rejects

Figure 1: Sequential-offer rule for n = 5 patients.

Timing and information. The timing of the game and the information available to each

center unfold as follows:

1. Nature draws a value vector x = (x1, . . . , xn) and an affiliation c : {1, . . . , n} →

{1, . . . , k} mapping each patient to a center.

2. Each center j privately observes its own type θj = {(i, xi) : c(i) = j}, which includes

the values and priority positions of its affiliated patients. It does not observe the values

or affiliations of other patients.

3. The OPO implements the sequential-offer rule: when the organ is offered to center c(i)

for patient i, center c(i) decides to accept or reject based on its type θc(i), knowing only

that all previous offers were rejected.
1We use c to refer to both the random affiliation mapping and its realization, where the distinction is

clear from context.
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Example 1. Consider n = 5 patients and k = 2 centers, with the realized affiliation and

value vector shown in Table 1. Center 1’s type is {(1,−0.1), (2, 0.4), (5, 0.6)} (blue), while

center 2’s type is {(3,−0.2), (4, 0.7)} (red). For clarity, Table 2 restates the information

available to center 1. With two centers, center 1 can deduce that patients 3 and 4 must

belong to center 2. If there were three or more centers, center 1 would be uncertain about

their affiliations. Thus, with two centers, it is as if affiliation c were publicly known.

Patient i 1 2 3 4 5

Center c(i) 1 1 2 2 1
Value xi −0.1 0.4 −0.2 0.7 0.6

Table 1: Affiliation c and value vector x

Patient i 1 2 3 4 5

Center c(i) 1 1 xx xx 1
Value xi −0.1 0.4 xx xx 0.6

Table 2: Information available to center 1

□

Strategies and equilibrium. Center j’s type space Θj consists of all possible subsets of

patients that could be affiliated with it, along with their possible value realizations:

Θj := {θj = {(i, xi) : i ∈ Ij} | Ij ⊆ {1, . . . , n}, xi ∈ [−1, 1] for all i ∈ Ij} .

Given its type θj = {(i, xi) : i ∈ Ij}, center j’s decision histories are: Hj(θj) := {hi : i ∈ Ij},

where hi is the history at which patient i is offered the organ. A strategy σj for center j is

a function:

σj(· | θj) : Hj(θj) → ∆({accept, reject}),

which, for each θj ∈ Θj, specifies the probability of accepting the organ at each decision

history h ∈ Hj(θj). A belief function µj for center j is a function:

µj(· | θj) : Hj(θj) → ∆(Θ−j),
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which, for each θj ∈ Θj, assigns a belief over the types of the other centers at each history

h ∈ Hj(θj).

A strategy profile σ = (σ1, . . . , σk) and belief system µ = (µ1, . . . , µk) constitute a Perfect

Bayesian Equilibrium (PBE) if:

1. For every center j, type θj ∈ Θj, and history h ∈ Hj(θj), the continuation strategy

σj(· | θj)|h maximizes center j’s expected continuation payoff, given belief µj(h | θj)

and the strategies σ−j of the other centers.

2. Beliefs µj(· | θj) are updated via Bayes’ rule wherever possible, given the strategy

profile σ and the observed history h. That is, for every j, θj ∈ Θj, h ∈ Hj(θj), and

every measurable set S ⊆ Θ−j,

µj(h | θj)(S) = Pr
(
θ−j ∈ S | h, θj, σ

)
,

whenever the conditioning event has positive probability under σ.

We adopt PBE as the solution concept. All model primitives {k, n, f, s} are assumed to be

common knowledge.

Remark 1 (Mild Refinement of PBE). PBE places no restrictions on beliefs at off-path

histories. In our model, only surprising rejections require specified beliefs, since surprising

acceptances, although also off-path, end the game. We assume that a surprising rejection

by center j does not alter its own belief about other centers’ types. This reflects the “no-

signaling-what-you-don’t-know” condition (Fudenberg and Tirole, 1991), which requires that

a player’s deviation does not reveal information they do not possess. Additionally, if an

opponent center rejects unexpectedly (an event occurring only under a universal organ), we

assume center j does not assign positive probability to values it had previously ruled out.
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2.1 Patient-Decision Benchmark

We first consider a benchmark in which each patient i observes their own match value xi

and decides whether to accept the organ, whereas in our model centers decide on behalf of

their patients.

Patients with weakly negative values reject the offer, while those with positive values

accept it. Let ipos(x) := min{i ∈ {1, . . . , n} : xi > 0} denote the first patient with a positive

value, with ipos(x) = +∞ if no such patient exists. The organ is therefore allocated to

patient ipos(x) if ipos(x) ⩽ n, and discarded otherwise. (To simplify notation, we sometimes

omit the dependence of ipos on x when no confusion arises, and do the same for other terms.)

This allocation, which we term the formal allocation, reflects the conventional expectation

of priority-based rules: the organ goes to the highest-priority patient with a positive value. To

measure adherence to this principle, we define the priority adherence index as the probability

that patient ipos(x) receives the organ, conditional on the organ being allocated:

Index := Pr[ ipos(x) receives the organ | the organ is allocated ] ,

where the probability is taken over all realizations of the value vector x = (x1, . . . , xn).

The priority adherence index formalizes, in probabilistic terms, the same fairness principle

captured by the notion of no justified envy in the school-choice literature (Abdulkadiroğlu

and Sönmez, 2003). In that setting, an assignment is said to have no justified envy if no

student prefers another student’s seat while having higher priority for that seat. Analogously,

in our setting, the patient ipos(x), the highest-priority patient with a positive value, plays

the role of the “justified claimant.” The priority adherence index measures how often this

claimant receives the organ. An index value of one indicates perfect adherence to priority

(no justified envy), whereas values below one quantify the frequency with which priority is

violated (i.e., justified envy arises).
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Under the patient-decision benchmark, the priority adherence index equals one. The

expected allocation value is the conditional mean of positive patient values:

E
[
xipos

∣∣ ipos ⩽ n
]
= E[xi | xi > 0] =

∫ 1

0
x f(x) dx
1− F (0)

.

3 Monopoly Center (k = 1)

We now turn to our main analysis, beginning with the polar case of a monopoly center that

observes all patient values and makes decisions for all patients. This setting highlights how

information and discretion shape allocation in the absence of competition.2

Let imax(x) ∈ argmaxi xi denote the patient with the highest value. If ximax > 0, the

center rejects the organ for all patients before patient imax and accepts it for imax; otherwise,

it rejects the organ for all patients. This strategy yields the center a payoff of (maxi xi)
+,

the positive part of maxi xi.

The distribution of ximax is given by [F (x)]n. Therefore, the expected allocation value is:

E[ximax |ximax > 0] =

∫ 1

0
x · n[F (x)]n−1f(x) dx

1− [F (0)]n
.

This expected allocation value is the highest achievable for our problem, since the organ

always goes to the patient with the greatest value above zero. Furthermore, this value is

increasing in n.

The monopoly allocation departs from perfect priority adherence because the center

may bypass earlier positive-valued patients in order to reach imax. Recall that the priority

adherence index is the probability that the first positive-valued patient, ipos, receives the

organ, conditional on allocation. In the monopoly setting, since the center allocates the

2The monopoly setting is not hypothetical; in some isolated regions, a single center effectively dominates
the top of the priority list.
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organ to imax as long as ximax > 0, the index is given by:

Index = Pr[ ipos = imax ⩽ n |ximax > 0 ] .

To compute this probability, suppose exactly m ∈ {1, . . . , n} patients have positive values.

This event occurs with probability
(
n
m

)
[1−F (0)]m[F (0)]n−m. Among these m positive-valued

patients, the probability that the highest-priority one is also the highest-valued patient is

1/m. Averaging over all possible m, the priority adherence index is therefore:

Index =

n∑
m=1

(
n
m

)
[1− F (0)]m[F (0)]n−m

m

1− [F (0)]n
. (1)

This calculation shows that the index depends on distribution F only through F (0). In

monopoly, the index reflects only “positional luck”: the probability that the first positive-

valued patient happens to be the highest-valued among all positive-valued patients. This

is a combinatorial question that depends only on the number of positive-valued patients

(determined by F (0)), not on how their positive values are distributed. By contrast, we

show in Section 4.2 that in multicenter settings the shape of F on [0, 1] beyond F (0) affects

the index.
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Figure 2: Effect of varying the number of patients n or F (0) on the index
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Figure 2 illustrates that the index decreases with n and increases with F (0). As n grows,

more patients seek the organ, increasing the likelihood that a later patient has a higher

value than the first positive-valued patient, thereby lowering the index. Conversely, since

the expected number of patients with positive values is (1 − F (0))n, a higher F (0) implies

fewer such patients, which raises the index.

Proposition 3.1. In a monopoly market, the priority adherence index (1) is strictly de-

creasing in n and strictly increasing in F (0), for all n ⩾ 2 and F (0) ∈ (0, 1). Moreover,

limF (0)→0 Index = 1/n and limF (0)→1 Index = 1.

The monopoly setting and the patient-decision benchmark lie at opposite ends of the

tradeoff between priority adherence and allocation value. Figure 3 illustrates this for n = 10

and xi ∼ Unif[0, 1]. The patient-decision benchmark achieves perfect adherence but yields

a low expected allocation value, whereas the monopoly setting attains the highest expected

allocation value but low adherence to priority.
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Figure 3: Monopoly versus patient-decision benchmark

4 Multiple Centers (k ⩾ 2)

We now turn to the multicenter setting. Patients are affiliated with centers independently

according to their market shares. Each center decides whether to accept or reject the organ
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on behalf of its patients. Table 1 illustrates one such affiliation c: patients 1, 2, and 5 belong

to center 1, while patients 3 and 4 belong to center 2. Unlike in the monopoly setting, where

the affiliation is trivial, here c shapes how the organ is allocated.

To analyze centers’ behavior, we introduce the i-batch, denoted Bi. Fix an affiliation c.

For each i ∈ {1, . . . , n}, Bi is the maximal interval of consecutive patients containing i who

are affiliated with the same center:

Bi :=
{
i′ ∈ {1, . . . , n} : c(ℓ) = c(i) for all ℓ ∈ {min(i, i′), . . . ,max(i, i′)}

}
.

Figure 4 illustrates the i-batch under a given affiliation c, where colors denote patients’

centers; in this example, the i-batch consists of patients i − 1 through i + 3. We also refer

to any such interval of consecutive patients affiliated with the same center as a batch. In

Table 1, patients 1–2 form the first batch, 3–4 the second, and 5 the third.

affiliation c: · · · i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4

i-batch

· · ·

Figure 4: The i-batch under a given affiliation c; colors denote patients’ centers.

4.1 Multicenter with Universal Organs (F (0) = 0)

We now characterize the equilibrium for universal organs.

Theorem 4.1 (Equilibrium for Universal Organs). Assume F (0) = 0 and k ⩾ 2. There

exists a unique equilibrium in which, when patient i is offered the organ, center c(i) accepts

if i is the highest-valued among those in the i-batch from i onward; otherwise, it rejects.

Consequently, the organ is allocated to the highest-valued patient in the first batch.

Two features drive this equilibrium. First, within each batch, the owning center opti-

mizes locally: if it accepts for some patient in that batch, it does so for the highest-valued
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patient, ensuring optimal intra-batch allocation. Second, the center currently offered the or-

gan strictly prefers to accept rather than pass it along. Since the next center will accept for

a patient in the next batch upon receiving the offer, a passed organ never returns. Together,

these two features ensure the organ goes to the highest-valued patient in the first batch.

This equilibrium yields a closed-form expression for the priority adherence index for any

k ⩾ 2 and market shares s = (s1, . . . , sk). To compute the index, we sum over centers

j ∈ {1, . . . , k}, where the first patient belongs to center j. For each j, we further sum over

m ∈ {1, . . . , n}, where m is the size of center j’s first batch. In this case, the organ goes

to the highest-valued patient among the first m patients. By symmetry, patient 1 is the

highest-valued (and thus receives the organ) with probability 1/m. The resulting index is:

Index(k, n, s) =
k∑

j=1

(
n−1∑
m=1

smj (1− sj)

m
+

snj
n

)
. (2)

The expected allocation value is computed analogously, except that when the first batch has

size m, the term 1/m is replaced by the expected maximum of m value draws:

k∑
j=1

(
n−1∑
m=1

smj (1− sj)

∫ 1

0

x ·m[F (x)]m−1f(x) dx+ snj

∫ 1

0

x · n[F (x)]n−1f(x) dx

)
. (3)

Figure 5 illustrates the impact of increasing the number of centers under uniform market

shares (s1 = · · · = sk). The left panel shows that the priority adherence index increases with

k, since greater market competition shrinks the expected size of the first batch, bringing the

index closer to the patient-decision benchmark. The right panel plots both measures: as k

increases, the index rises while the expected allocation value falls, with both converging to

their respective patient-decision benchmark values. We formalize these comparative statics

in the following proposition.

Proposition 4.1. Under uniform market shares and universal organs, (i) the priority adher-
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Figure 5: Effect of increasing the number of centers k: n = 10, xi ∼ Unif[0, 1]

ence index is strictly increasing in k; (ii) the expected allocation value is strictly decreasing in

k; and (iii) as k → ∞, both converge to their respective patient-decision benchmark values.

Figure 5 also shows that both measures change sharply when moving from monopoly

(k = 1) to duopoly (k = 2): the priority adherence index rises dramatically while the

expected allocation value drops substantially. This sharp shift reflects a structural change:

introducing a second center creates a positive chance that another center cuts the first batch

short. Beyond that, both measures become less sensitive to which center does the cutting,

so adding more centers yields diminishing marginal effects. Notably, the probability that

the first two patients belong to different centers (i.e., c(1) ̸= c(2)) jumps from 0 to 0.5 when

moving from one to two centers, accounting for most of the change in both measures.

4.2 Multicenter with Selective Organs (F (0) ∈ (0, 1))

Our analysis to this point highlights two structural forces that tend to raise priority adher-

ence, as illustrated in Figure 6. The first is pool thinning : as F (0) increases, fewer patients

have positive values, so the pool of patients interested in the organ shrinks. With fewer

interested patients, the first positive-valued patient faces less competition, thereby increas-

ing priority adherence. This effect is most clearly seen in the monopoly market, where
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Proposition 3.1 shows that priority adherence increases in F (0).

The second force is batch shortening : as the number of centers k increases, consecutive

patients are less likely to belong to the same center, so each batch tends to contain fewer

patients. Earlier, we showed that if a center ever accepts for some patient in a batch, it

must do so for the highest-valued patient in that batch. Shorter batches make it more likely

that the first positive-valued patient in a batch is also the highest-valued patient, thereby

increasing priority adherence. This effect is most clearly seen for a universal organ, where

the organ goes to the highest-valued patient within the first batch, and Proposition 4.1 shows

that priority adherence increases in k.

Monopoly, universal organ

Monopoly, selective organ

Multicenter, universal organ

Pool
thin

ning
(PT)

Batch shortening (BS)

Multicenter, selective organ
PT, BS, Strategic delay

Figure 6: Structural forces shaping priority adherence

When we move to the multicenter setting with selective organs, a third force arises,

strategic delay : a center may reject the organ for all its patients in an earlier batch even

when that batch contains positive-valued patients. Unlike the first two forces, strategic delay

reduces priority adherence.

To illustrate, suppose center 1 faces the situation in Table 3. Its two relevant options

are: (i) accept immediately for patient 1, securing a payoff of 0.1; or (ii) delay by rejecting

for patients 1 and 2 and, if the organ is rejected for patients 3 and 4, accept for patient 5,

obtaining 0.9. If the likelihood that the organ is rejected for patients 3 and 4 exceeds 1/9,
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center 1 optimally delays to accept for patient 5, trading off patient 1’s higher priority for

patient 5’s higher value.

Patient i 1 2 3 4 5

Center c(i) 1 1 xx xx 1
Value xi 0.1 -0.4 xx xx 0.9

Table 3: Illustration of a situation in which center 1 may delay

To formalize this priority-value tradeoff, we characterize equilibrium behavior, focusing

on the case of two centers. This case captures the essence of the game while yielding the

cleanest result.

Theorem 4.2 (Equilibrium for Selective Organs and Two Centers). Assume F (0) ∈ (0, 1)

and k = 2. Fix an affiliation c. An equilibrium {αi, δi}ni=1 satisfies:

αi = Pr
[
xi > 0 and δixi ⩾ δi′xi′ ∀ i′ with c(i′) = c(i)

]
=

∫ 1

0

f(u)
∏

i′ ̸=i, c(i′)=c(i)

F
(

δiu
δi′

)
du, (4)

δi = 1−
∑

i′<i, c(i′ )̸=c(i)

αi′ , (5)

where αi is the probability that center c(i) makes its first acceptance at patient i, and δi is

the probability that c(i)’s opponent center rejects the organ for all its patients who precede i.

For a realized value vector x, center c(i) accepts for patient i if xi > 0 and δixi ⩾ δi′xi′

for all i′ > i with c(i′) = c(i), and rejects otherwise.

The theorem can be understood in terms of two jointly determined sequences: the reach

probabilities {δi}ni=1 and the acceptance probabilities {αi}ni=1. The organ can reach patient i

only if c(i)’s opponent center rejects it for all its patients with higher priority than i; δi

is the probability that this occurs. The expected value to center c(i) from bypassing its

higher-priority patients to accept the organ for patient i is δixi. Each center j thus compares

its patients i ∈ c−1(j) by their discounted values δixi, accepting first for the patient with the
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highest such value, provided it is positive. Given this equilibrium behavior, αi is the ex-ante

probability that center c(i) makes its first acceptance at patient i. In sum, {δi}ni=1 captures

how priority affects each patient’s reach probability, while {αi}ni=1 characterizes acceptance

behavior once this priority effect is internalized.

The next example solves (4)–(5) to compute {αi, δi}ni=1 for a given affiliation c, and then

illustrates how realized acceptance decisions follow from comparing discounted values δixi

across a center’s patients.

Example 2. Consider a setting with n = 5 patients and xi ∼ Unif[−1, 1]. Consider the

affiliation c with c(1) = c(2) = c(5) = 1 and c(3) = c(4) = 2. Patients 1 and 2 form the

first batch and have higher priority than all patients from the opponent center, so their

reach probabilities equal 1. Center 2 has only one batch with patients 3 and 4, so it accepts

for the patient with the higher value (if positive), yielding α3 = α4 = 3/8. Consequently,

patient 5 has reach probability 1 − α3 − α4 = 1
4
. Center 1 then compares the discounted

values {x1, x2, (1/4)x5} and makes its first acceptance at the patient with the highest positive

discounted value. The full set of equilibrium probabilities is reported in the left table.

The right table shows one realization of patient values for center 1’s patients 1, 2, and 5.

In this case, the discounted value δixi is highest for patient 5 (equal to 0.225), so center 1

rejects the organ for patients 1 and 2 and accepts it for patient 5.

Patient i 1 2 3 4 5

Center c(i) 1 1 2 2 1

Accept prob. αi
275
768

275
768

3
8

3
8

61
384

Reach prob. δi 1 1 109
384

109
384

1
4

Patient i 1 2 3 4 5

Center c(i) 1 1 xx xx 1

Value xi 0.1 -0.4 xx xx 0.9

Disc. value δixi 0.1 -0.4 xx xx 0.225

Table 4: Equilibrium acceptance/reach probabilities (left) and strategic delay (right)

□
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The preceding example illustrates strategic delay but leaves open whether it rivals pool

thinning or batch shortening in shaping priority adherence. We now show that it does.

Recall that pool thinning alone causes the priority adherence index to increase in F (0):

fewer interested patients means less competition for the first positive-valued patient. The

next example shows that strategic delay can reverse this relationship, causing the index

to decrease in F (0). Intuitively, as F (0) increases, the opponent center is more likely to

reject for all its patients, making it more attractive for the current center to bypass earlier,

lower-valued patients in favor of later, higher-valued ones.

Example 3. Consider a setting with n = 3 patients, k = 2 centers, and uniform mar-

ket shares s = (1/2, 1/2). The affiliation c = (c(1), c(2), c(3)) is uniform over {1, 2}3:

{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}. Strategic delay arises

only if two conditions are met: (i) the affiliation is (1, 2, 1) or (2, 1, 2), and (ii) both pa-

tients 1 and 3 have positive values. When these conditions hold, the center owning patients

1 and 3 must decide nontrivially whether to reject the organ for patient 1 in order to accept

it for patient 3. The center owning patient 2 rejects the organ whenever x2 < 0, which occurs

with probability F (0); hence, patient 3’s reach probability is F (0). Therefore, conditional

on x1 > 0 and x3 > 0, patient 1 is bypassed if and only if x1 < F (0)x3, an event that occurs

with probability Pr
(
x1 < F (0)x3 | x1 > 0, x3 > 0

)
.

Consider the density function f(x) for xi parameterized by F (0):

f(x) =



F (0), x ∈ [−1, 0],

1− F (0)

2ε
, x ∈

[
1
2
− ε, 1

2

]
or x ∈ [1− ε, 1],

0, otherwise.

Conditional on being positive, xi has a 50% chance of falling into the lower cluster (near
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1/2) and a 50% chance of falling into the higher cluster (near 1). In the limit ε → 0, the

probability Pr
(
x1 < F (0)x3 | x1 > 0, x3 > 0

)
is:


0 if F (0) < 1

2

3
16

if F (0) = 1
2

1
4

if F (0) > 1
2
.

Strategic delay emerges once F (0) reaches 1/2; whenever it occurs, it contributes zero to

the priority adherence index because the center owning patients 1 and 3 bypasses its first

positive-valued patient. Accordingly, Figure 7 shows a discontinuous drop in the index at

F (0) = 1/2. □
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Figure 7: Priority adherence index as a function of F (0)
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5 Alternative Allocation Rules

5.1 Two Priority-Based Rules

While the sequential-offer rule remains the dominant allocation rule in practice, alternative

procedures have begun to appear. For example, staff at LiveOn NY, an OPO in New York,

reported that after five hours, they invited favored hospitals to each propose one patient;

the organ was then allocated to the highest-priority patient among those proposed.

Motivated by such practices, we formalize the priority-proposal rule: each center may

propose one of its own patients, and the organ is allocated to the proposed patient with the

highest priority. The game follows the same timing as in Section 2, except that in step 3 the

OPO applies the priority-proposal rule. Conceptually, this rule is analogous to a first-price

auction, but with two key differences: (i) the winner is determined by priority rank rather

than bid amount, and (ii) there is no payment.

Likewise, the sequential-offer rule is analogous to a Dutch (descending-price) auction.

The OPO starts with the highest-priority patient and proceeds sequentially down the list

until a center accepts on behalf of a patient. Here the “clock” runs down the priority list

rather than the price, and again there is no payment.

5.2 Strategic Equivalence and Connection to Auctions

Mirroring the strategic equivalence between the first-price and Dutch auctions, we establish

a similar equivalence between the priority-proposal and sequential-offer rules.

Theorem 5.1. The priority-proposal rule and the sequential-offer rule are strategically equiv-

alent.

Figure 8 illustrates the strategic and conceptual relationships between two organ alloca-

tion rules (left column) and their auction counterparts (right column). Horizontal arrows
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represent conceptual analogies, while vertical arrows indicate strategic equivalence. Our

focus is on the allocation rules, with the auctions serving as familiar benchmarks.

Priority-proposal rule

Sequential-offer rule

First-price auction

Dutch auction

Organ allocation rules Auctions

conceptual counterpart

conceptual counterpart

strategically equivalent strategically equivalent

Figure 8: Strategic and conceptual relationships among four mechanisms

To better understand the connection between the priority-proposal rule and the first-

price auction, we compare their type and payoff structures. The same comparison applies

between the sequential-offer rule and the Dutch auction.

In the standard first-price auction, each bidder j has a one-dimensional private value vj

and, if it wins with bid b, earns payoff (vj − b), which is linear in both value and bid.

By contrast, under the priority-proposal rule each center j has a multi-dimensional

type θj, consisting of the values and priority positions of all its patients. Although each

center j is restricted to proposing one of its own patients, we can equivalently enlarge the

action space to allow proposing any patient i ∈ {1, . . . , n}, and define the payoff from win-

ning with proposal i to be xi if i ∈ c−1(j) and −∞ otherwise. Under this representation, the

payoff is neither monotone in the “bid” (the priority rank of the proposed patient) nor mono-

tone in any one-dimensional summary of θj. These features make the problem substantially

less tractable than standard auctions, explaining why we developed analytical tools tailored

to priority-based systems rather than relying on familiar auction techniques.
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5.3 Practical Considerations and Policy Implications

Theorem 5.1 yields two key implications. First, every equilibrium characterization for the

sequential-offer rule carries over to the priority-proposal rule. Second, because the two rules

are outcome-equivalent, choosing between them hinges largely on practical considerations

outside our model.

One major challenge in organ allocation is time: on average, transplants must occur

within 20 hours after an organ is recovered. This constraint makes the sequential-offer rule

costly, as it requires the OPO to contact centers sequentially, a time-consuming process. In

response, some OPOs have sent open offers to selected centers within hours of organ recovery

without clear guidelines, raising fairness concerns.3

In contrast, the priority-proposal rule invites all centers to submit proposals simultane-

ously, saving the time otherwise spent contacting centers sequentially after rejections.

While the priority-proposal rule may save time in allocating the organ, it may also in-

troduce a tradeoff: Centers with lower-priority patients may invest effort in identifying a

candidate, only to see the organ go to a higher-priority center. Nonetheless, with the rate

of out-of-sequence allocations rising from 2% to 19% in recent years, often justified by time

sensitivity, and with growing public distrust in the transplant system, we suggest that the

priority-proposal rule be seriously considered as a practical alternative.

Remark 2 (Why the Dutch-Auction Analogy Does Not Imply Speed). In some markets for

perishable goods, a Dutch auction can clear sales very quickly.4 At the Aalsmeer flower

auction, for example, the price ticks down automatically; the first bidder to press the button

wins, and the sale can conclude in seconds. By contrast, this automated progression is absent

3In interviews, the heads of Mid-America Transplant (St. Louis) and LiveOn NY (New York City)
defended their policies of initiating open offers eight and five hours, respectively, after organ recovery. They
explained that recent rule changes, requiring offers to be made to patients nationwide, had imposed additional
time constraints.

4We thank Curtis Taylor for raising this point.
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under the sequential-offer rule for deceased-donor organ allocation. Transplant centers can

take up to one hour to decide whether to accept an offer; if they decline (or the clock

runs out), the OPO must actively advance the offer to the next patient (Committee on

Organ Procurement and Transplantation Policy, 2000; Mankowski et al., 2019). The OPO

therefore contacts centers one by one and waits for each response. This difference—automatic

progression versus response-dependent advancement—explains why the sequential-offer rule

is slow despite its conceptual parallel to a Dutch auction.

6 Conclusion

We develop a canonical model of organ allocation that explicitly incorporates the strategic

behavior of transplant centers as “big players” in the system. Within this framework, our

key innovation is the introduction of a priority adherence index, which quantifies the fun-

damental tradeoff between priority adherence and allocation value across different market

structures and allocation rules. Our analysis reveals three structural forces, pool thinning,

batch shortening, and strategic delay, that systematically determine when and why priority

is violated.

As the New York Times recently emphasized, “For decades, fairness has been the guiding

principle of the American organ transplant system ... meant to ensure that donated organs

are offered to the patients who need them most, in careful order of priority.” Our framework

provides the first formal lens for understanding when and why this principle is upheld or

violated in practice. Looking forward, important extensions include incorporating OPO

incentives (following Chan and Roth, 2024) and applying our framework to evaluate ongoing

policy innovations in the transplant system.
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A Proofs for Section 3

Proof of Proposition 3.1. We first derive a different expression for the priority adherence

index by summing over all i ∈ {1, . . . , n} such that i is both the first positive-valued patient

and the highest-valued patient, and dividing this sum by the probability that the organ is

allocated. We also explicitly write the index as a function of F (0) and n:

Index(F (0), n) = Pr[ ipos = imax ⩽ n |ximax > 0 ] =

∑n
i=1 Pr[ ipos = i and imax = i ]

Pr[ximax > 0 ]

=

∑n
i=1 F (0)i−1

∫ 1

0
F (s)n−if(s) ds

1− F (0)n
=

∑n
i=1

F (0)i−1−F (0)n

n−i+1

1− F (0)n

=
n∑

i=1

F (0)i−1 − F (0)n

(n− i+ 1)(1− F (0)n)
.

Taking the partial derivative of Index(F(0),n) with respect to F (0), we obtain that

∂Index(F (0), n)

∂F (0)
=

n∑
i=1

(i− 1)F (0)i + F (0)n (F (0)i(−i+ n+ 1)− F (0)n)

F (0)2 (F (0)n − 1)2 (−i+ n+ 1)

=
F (0)n−1

(1− F (0)n)2

n∑
i=1

(
F (0)i−1

(
(i− 1)F (0)−n

−i+ n+ 1
+ 1

)
+

n

i− n− 1

)
(6)

Let

g(F (0), n, i) = F (0)i−1

(
(i− 1)F (0)−n

−i+ n+ 1
+ 1

)
+

n

i− n− 1
.

It is readily verified that limF (0)→1 g(F (0), n, i) = 0. The partial derivative of g(F (0), n, i)

with respect to F (0) is:

∂g(F (0), n, i)

∂F (0)
= (1− i) (1− F (0)n)F (0)i−n−2,

which equals zero if i = 1, and strictly negative for i ⩾ 2. Hence, g(F (0), n, i) = 0 if i = 1,

and strictly positive for i ⩾ 2. This implies that (6) is strictly positive, so Index(F (0), n)
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strictly increases in F (0).

We next show that Index(F (0), n) strictly decreases in n. Let p = F (0) and j = n− i+1.

When i goes from 1 to n, j goes from n to 1. So:

Index(p, n) =
n∑

i=1

pi−1 − pn

(n− i+ 1)(1− pn)
=

n∑
j=1

pn−j − pn

j(1− pn)
=

pn

1− pn

n∑
j=1

1− pj

jpj
.

Thus,

Index(p, n+ 1)− Index(p, n) =
pn+1

1− pn+1

n+1∑
j=1

1− pj

jpj
− pn

1− pn

n∑
j=1

1− pj

jpj

=
pn+1

1− pn+1

1− pn+1

(n+ 1)pn+1
+

(
pn+1

1− pn+1
− pn

1− pn

) n∑
j=1

1− pj

jpj

=
1

n+ 1
− (1− p)pn

(1− pn+1)(1− pn)

n∑
j=1

1− pj

jpj
.

Hence, Index(p, n+ 1)− Index(p, n) < 0 is equivalent to:

H(p) :=
n∑

j=1

1− pj

jpj
− (1− pn+1)(1− pn)

(1 + n)(1− p)pn
> 0.

It is readily verified that limp→1H(p) = 0, so in order to show that H(p) < 0 for p ∈ (0, 1)

we only need to show that H ′(p) < 0 for p ∈ (0, 1):

H ′(p) =
n∑

j=1

(−p−j−1) +
n(1− p) (1− p2n+1)− p (1− pn)2

(n+ 1)(1− p)2pn+1

=
(1− pn+1) [(1 + n (1− p)) pn − 1]

(n+ 1)(1− p)2pn+1
< 0

⇐⇒ 1− (1 + n(1− p))pn > 0

⇐⇒ 1− pn

1− p
> npn ⇐⇒

n−1∑
i=0

pi > npn.
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This last inequality is true since pi > pn for any i ∈ {0, 1, ..., n− 1}, p ∈ (0, 1), and n ⩾ 2.

The limiting results limF (0)→0 Index(F (0), n) = 1/n and limF (0)→1 Index(F (0), n) = 1

follow directly from the expression of Index(F (0), n).

B Proofs for Section 4

Proof of Theorem 4.1. We first show that the characterization indeed constitutes an equi-

librium, and then prove its uniqueness.

Suppose the affiliation c induces a total of z batches, with batch sizes n1, n2, . . . , nz ⩾ 1,

ordered from earliest to latest, such that
∑z

j=1 nj = n. We begin with the last batch of

patients, managed by center c(n).

1. When the game reaches history hn, center c(n) strictly prefers to accept rather than

reject, since acceptance yields a payoff of xn > 0, while rejection yields zero.

2. If the last batch contains only one patient (i.e., nz = 1), the analysis for the last batch is

complete. Otherwise, suppose the last batch contains multiple patients. Consider the

game at hn−1. If center c(n) accepts, it receives xn−1; if it rejects, the game proceeds

to hn, in which case it receives xn. Thus, c(n) prefers to accept if xn−1 ⩾ xn, and to

reject otherwise.

3. This logic extends recursively. Suppose the game reaches hi for some i in the last

batch. If c(n) accepts, it receives xi; if it rejects, the game continues and yields a

payoff of maxi+1⩽g⩽n xg to center c(n). Therefore, center c(n) prefers to accept if

xi ⩾ maxi+1⩽g⩽n xg, and to reject otherwise.

This completes the analysis of the last batch: center c(n) accepts for patient i if xi is the

highest value among those weakly after i within the last batch; otherwise, it rejects.
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Next, consider the second-to-last batch. When the game reaches h∑z−1
j=1 nj

—the last pa-

tient in that batch—center c
(∑z−1

j=1 nj

)
strictly prefers to accept, since x∑z−1

j=1 nj
> 0, and

rejecting passes the organ to a different center, which will accept it for one of its own pa-

tients—resulting in a payoff of zero for center c
(∑z−1

j=1 nj

)
. By the same logic as in the last

batch, center c
(∑z−1

j=1 nj

)
accepts for patient i if xi is the highest value among those weakly

after i within the second-to-last batch; otherwise, it rejects.

Repeating this argument for each of the earlier batches completes the argument that the

characterization is an equilibrium.

We next prove uniqueness using an induction argument.5 We show that for any n =

1, 2, . . ., the characterization describes the unique equilibrium. The claim obviously holds

for n = 1. Suppose it holds for n = m ⩾ 1; we now show that it also holds for n = m + 1.

We divide into two cases depending on whether patients 1 and 2 belong to the same center.

1. Patient 1 belongs to a different center from patient 2. Then c(1) will accept for patient

1. Accepting gives c(1) a payoff of x1, while rejecting passes the organ to c(2). With

m patients remaining, the unique outcome is that the organ never circles back to c(1)

by the induction hypothesis.

2. Patient 1 belongs to the same center as patient 2. Suppose the first batch includes

patients 1 through g ⩾ 2. If c(1) accepts for patient 1, its payoff is x1. If c(1) rejects

for patient 1, then with m patients remaining, the unique outcome is that c(1) receives

a payoff of max2⩽i⩽g xi. Thus, c(1) prefers to accept for patient 1 if and only if

x1 ⩾ max
2⩽i⩽g

xi,

which yields the same characterization of behavior as in our theorem.

Hence, the characterization is the unique equilibrium for n = m+ 1.
5We thank Attila Ambrus for suggesting this argument.
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Proof of Proposition 4.1. Substituting sj = 1/k into (2), we obtain

Index(k, n, s) = k

(
n−1∑
m=1

(k − 1)
(
1
k

)m+1

m
+

(
1
k

)n
n

)
=

n−1∑
m=1

(k − 1) k−m

m
+

k1−n

n
.

We next show that the right-hand side strictly increases in k for k ∈ R with k ⩾ 1. Let

H(k) =
n−1∑
m=1

(k − 1) k−m

m
+

k1−n

n
.

Then

H ′(k) =
n−1∑
m=1

k−m−1
(
m(1− k) + k

)
m

− (n− 1)k−n

n
.

Separate the m = 1 term:

H ′(k) =
1

k2
+

n−1∑
m=2

k−m−1
(
m(1− k) + k

)
m

− (n− 1)k−n

n
.

Bound the remaining terms:

n−1∑
m=2

k−m−1
(
m(1− k) + k

)
m

⩾
n−1∑
m=2

k−m−1
(
m(1− k) + 0

)
m

= k−n − 1

k2
.

Therefore,

H ′(k) ⩾
1

k2
+ k−n − 1

k2
− (n− 1)k−n

n
=

k−n

n
> 0.

Hence, under uniform market shares sj = 1/k, the index is strictly increasing in k for k ⩾ 1.

Finally, the limiting result limk→∞ Index = 1 holds because, as k → ∞, all the terms except

(k − 1)/k converge to zero.

Substituting sj = 1/k into (3), and letting x(m) denote the expected maximum of m

draws and V (k) the expected allocation value as a function of k, we can write this expected
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value as:

V (k) := k

(
n−1∑
m=1

1

km

(
1− 1

k

)
x(m) +

1

kn
x(n)

)
=

n−1∑
m=1

(
k1−m − k−m

)
x(m) + k1−nx(n).

Then, the derivative V ′(k) is given by:

V ′(k) =
n−1∑
m=1

k−1−m(k +m− km)x(m) + k−n(1− n)x(n).

The inequality k +m − km ⩽ 0 is true for all integers k ⩾ 2 and m ⩾ 2 and strictly so if

either k > 2 or m > 2. Also, x(m) is increasing in m. We thus have the following inequality:

V ′(k) <
n−1∑
m=1

k−1−m(k +m− km)x(1) + k−n(1− n)x(1)

=

(
n−1∑
m=1

k−1−m(k +m− km) + k−n(1− n)

)
x(1) = 0.

Hence, the expected value V (k) decreases in k. The limiting result limk→∞ V (k) = x(1)

holds because, as k → ∞, all the terms except (1− 1/k)x(1) converge to zero.

Proof of Theorem 4.2. By the strategic equivalence between the priority-proposal rule

and the sequential-offer rule (established in Theorem 5.1), we first characterize the Bayesian

Nash Equilibrium for the priority-proposal rule. Fix affiliation c. Let αi be the probability

that center c(i) proposes patient i. Then, from center c(i)’s perspective, the probability that

the opponent center proposes a patient before patient i is:

∑
i′<i,c(i′ )̸=c(i)

αi′ .

Define δi := 1−
∑

i′<i,c(i′) ̸=c(i) αi′ . Hence, center c(i)’s expected payoff from proposing patient

i is δixi. Center c(i) proposes patient i if and only if xi > 0 and δixi ⩾ δi′xi′ for all i′ with
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c(i′) = c(i). This pins down αi to be:

αi = Pr[xi > 0 and δixi ⩾ δi′xi′ ∀ i′ with c(i′) = c(i) ] .

This completes the characterization of the BNE for the priority-proposal rule.

For the sequential-offer rule, we specify a center’s choice at every decision history. When

the offer reaches patient i, center c(i) accepts patient i if xi > 0 and

xi ⩾

(
1−

∑
i<i′<i′′,c(i′) ̸=c(i) αi′

δi

)
xi′′ , for all i′′ > i with c(i′′) = c(i).

Substituting δi = 1−
∑

i′<i,c(i′ )̸=c(i) αi′ into this expression yields:

δixi ⩾

δi −
∑

i<i′<i′′,c(i′ )̸=c(i)

αi′

xi′′ = δi′′xi′′ , for all i′′ > i with c(i′′) = c(i).

This completes the proof.

C Proofs for Section 5

Proof of Theorem 5.1. Under the priority-proposal rule, center j with type θj = {(i, xi) :

i ∈ Ij} simultaneously proposes a patient from the action space Ij ∪ {∅}, where ∅ indi-

cates that center j proposes no patient. Given the proposal profile (b1, . . . , bk), the organ is

allocated to the proposed patient with the highest priority.

Under the sequential-offer rule, a pure strategy for center j specifies whether to accept or

reject at each decision history h ∈ Hj(θj). However, we can partition center j’s strategy space

into outcome-equivalent classes based on which patient in Ij ∪ ∅ is the first for whom center

j accepts. Each such equivalence class can be represented by a single element pj ∈ Ij ∪ {∅},

where pj is the first patient that center j would accept, and ∅ represents the strategy of
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rejecting for all patients. Given the first-patient-to-accept profile (p1, . . . , pk), the organ is

allocated to the patient with the highest priority among (p1, . . . , pk).

Therefore, both rules have identical reduced-form strategy spaces: each center j effec-

tively chooses an element from Ij ∪ {∅}.

Given any strategy profile (s1, . . . , sk) where sj ∈ Ij ∪ {∅}, both rules allocate the organ

to the patient with highest priority among (s1, . . . , sk). Since payoffs depend only on which

patient receives the organ, both rules induce identical payoff functions over strategy profiles.

Since the two rules have identical strategy spaces and identical payoff functions over

strategy profiles, they are strategically equivalent.
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