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Abstract

Do workers from social groups with comparable productivity distributions obtain compara-

ble lifetime earnings? We study how a small amount of early-career discrimination propagates

over time when workers’ productivity is revealed through employment. In breakdown learning

environments that primarily track on-the-job failures, such discrimination spirals into a sub-

stantial lifetime earnings gap for groups of comparable productivity, whereas in breakthrough

learning environments that track successes, early-career discrimination can be self-corrected,

so comparable groups obtain comparable lifetime earnings. This contrast persists in large

labor markets and with flexible wages, inconclusive learning, investment in productivity, and

misspecified employers’ beliefs.

JEL: C78, D83, J71

Keywords: early-career statistical discrimination, star jobs, guardian jobs, spiraling dis-

crimination, self-correcting discrimination

1 Introduction

Young workers enter the labor market with uncertain productivity levels. To cope with this

uncertainty, employers have been shown to rely on observable characteristics—such as a worker’s

race or gender—as statistical proxies for the worker’s productivity.1 Such early-career statistical

discrimination determines who makes the first cut when job opportunities are scarce. Even if

different social groups have comparable productivity distributions, groups that make the first cut

may be systematically prioritized.

Does the impact of such early-career discrimination on workers’ earnings vanish or intensify over

time? One plausible conjecture is that social groups of comparable productivity obtain comparable
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Economics, Northwestern University; email: yingni.guo@northwestern.edu. Strulovici: Department of Economics,
Northwestern University; email: b-strulovici@northwestern.edu. We thank Attila Ambrus, Peter Arcidiacono,
Heski Bar-Isaac, Aislinn Bohren, Yeon-Koo Che, Hanming Fang, Rachel Kranton, Kevin Lang, Erik Madsen,
Peter Norman, Wojciech Olszewski, Alessandro Pavan, Giorgio Primicieri, Anja Prummer, Heather Sarsons, Curtis
Taylor, Huseyin Yildirim, and seminar audiences at various seminars and workshops for valuable feedback.

1Discrimination in hiring practices has been empirically documented by Goldin and Rouse (2000), Pager (2003),
Bertrand and Mullainathan (2004), and other studies surveyed in Bertrand and Duflo (2017).
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lifetime earnings: over time, employers learn about workers’ productivity from observing their

performance and reallocate opportunities accordingly. However, an opposite conjecture suggests

that comparable groups may fare drastically differently: when early opportunities to perform are

pivotal to a worker’s career progression, workers favored early on fare substantially better.

This paper shows that how employers learn about workers’ productivity makes a critical dif-

ference for which conjecture prevails. In environments that primarily track on-the-job successes,

early-career discrimination has only minor consequences for workers’ later job opportunities and

lifetime earnings. In environments that primarily track on-the-job failures, in contrast, early-

career discrimination significantly affects workers’ lifetime prospects. Moreover, the adverse effect

on workers who are discriminated against intensifies with job scarcity: the scarcer jobs are relative

to the size of the workforce, the higher the inequality between groups. Our analysis thus suggests a

classification of learning environments that predicts whether, and if so, under which circumstances

the impact of early-career discrimination vanishes or gets amplified over time.

This contrast between learning environments persists even with flexible wage determination—

a possibility that we formalize through a dynamic two-sided matching model. Even between

highly comparable social groups, environments that track failures induce a substantial delay in

employment and a significantly lower wage path for groups that are disfavored at the outset.

Model. We study labor markets in which (i) workers from different groups compete for tasks, (ii)

employers learn about a worker’s productivity only if the worker performs a task, and (iii) groups

have comparable productivity distributions.2 Sarsons (2022) studies one such market in which

male and female surgeons compete for referrals from physicians. Physicians learn about surgeons’

abilities from surgeries they performed in the past. Sarsons (2022) documents comparable ability

distributions for male and female surgeons: the average ability is only slightly lower for female

surgeons in her sample.3 We investigate the consequences of such a small difference.

We begin with a small market that features one employer and two workers identified by their

respective social groups, a and b. A worker’s productivity is either high or low, and worker a is ex

ante more likely than worker b to have high productivity. In each instant, the employer allocates

the task to one of the two workers—similar to a physician choosing a surgeon for referral—or takes

an outside option if the expected productivity of both workers is too low. The employer’s flow

payoff increases in the productivity of the employed worker, whereas workers benefit from being

allocated the task regardless of their productivity. In section 3, we analyze a large market with a

continuum of workers from each group and a continuum of employers.

The employer learns about a worker’s productivity from their performance. We contrast two

learning environments: breakthrough learning and breakdown learning. In the breakthrough en-

vironment, a high-productivity worker generates successes, which we call breakthroughs, at ran-

2These stylized features tractably capture a more general setting in which (i’) some tasks are more desirable
than others and desirable tasks are in limited supply, (ii’) workers who perform desirable tasks reveal more about
their productivity than do workers who are either employed in other tasks or unemployed, and (iii’) groups do
not necessarily have comparable productivity distributions. Our focus on groups with comparable productivity
distributions highlights the role played by the learning environment in the dynamics of statistical discrimination.

3See section 2.2.2 and Figure 1 in Sarsons (2022).
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domly distributed times, whereas a low-productivity worker generates nothing. In the breakdown

environment, a low-productivity worker generates failures, which we call breakdowns, at ran-

domly distributed times, whereas a high-productivity worker generates nothing. We also analyze

mixed learning environments that combine both breakthroughs from high-productivity workers and

breakdowns from low-productivity workers; the relative frequency of the two determines whether

the environment is breakthrough-salient or breakdown-salient.

The learning environment can be viewed as an intrinsic feature of the job considered. Break-

through and breakdown environments correspond, respectively, to “star jobs” and “guardian jobs,”

as conceptualized by Jacobs (1981) and Baron and Kreps (1999). Star jobs—such as high-

stakes salespeople, entertainers, and athletes—feature infrequent but large successes. By con-

trast, guardian jobs—routine surgeons, airline pilots, prison guards, among numerous others—are

marked by infrequent but costly failures.4 (Figure 5 in appendix A.1 compares the performance

distributions of star jobs and guardian jobs.5)

Main results. In both learning environments, the employer first allocates the task to worker a,

who has a higher expected productivity. However, subsequent task allocations differ drastically

across environments. In the breakthrough environment, worker a’s expected productivity declines

gradually in the absence of a breakthrough, until it drops to that of worker b’s. From this point

onward, the employer treats the two workers equally. The length of this grace period over which

the task is allocated exclusively to worker a reflects the difference in the two workers’ expected

productivity at the start. The smaller this initial difference, the shorter the grace period for worker

a, and the smaller the first-hire advantage of worker a. As this difference shrinks to zero, so does

the advantage of worker a. The breakthrough environment is thus self-correcting.

In the breakdown environment, in contrast, the absence of a breakdown from worker a makes

the employer more optimistic about the worker’s productivity. Therefore, the employer allocates

the task exclusively to worker a until a breakdown occurs. Worker b gets a chance to perform

the task only if worker a has low productivity and misperforms on the task. As a result, worker

b’s expected lifetime earnings are only a fraction of worker a’s. We show that even if worker a’s

productivity distribution is only slightly superior ex ante, this small initial difference spirals into

a large payoff inequality. This spiraling effect persists even as learning by the employer becomes

arbitrarily fast. It can explain why societies struggle to eliminate inequality in labor markets.

This contrast between breakthrough and breakdown environments extends to mixed learning

environments with both breakthroughs and breakdowns. Any breakthrough-salient environment—

in which breakthroughs arrive faster than breakdowns—continues to be self-correcting, whereas any

4Bose and Lang (2017) argue that most nonmanagerial jobs are guardian jobs and derive the optimal monitoring
policy for such jobs. We instead compare the lifetime impact of early-career discrimination in star jobs to that in
guardian jobs.

5Similarly to the performance distribution of star jobs in Figure 5, O’Boyle and Aguinis (2012) and Aguinis
and Bradley (2015) show that in occupations centered around star performance, such as entertainers and athletes,
the empirical distribution of performance is indeed right-skewed. This implies that “the majority of individuals are
assumed to perform at an average level, with very few people actually achieving a level of performance that would
place them in the category of being a star performer” (Aguinis and Bradley, 2015, p. 162).
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breakdown-salient environment gives rise to spiraling. However, the contrast is now more nuanced:

fixing the total arrival rate but varying the arrival rate of breakthroughs relative to breakdowns,

the payoff gap between the two workers changes smoothly as the environment shifts continuously

from pure breakthrough learning to pure breakdown learning. The more comparable the groups

become, the more pronounced is the contrast between breakthrough-salient and breakdown-salient

environments: the payoff gap converges to zero for any breakthrough-salient environment but

converges to the strictly positive gap of a pure breakdown environment for any breakdown-salient

environment.

We further explore this contrast in the large market. We show that the key determinant of

the spiraling effect in the breakdown environment is the scarcity of tasks relative to the size of

the workforce. As tasks become scarcer, the inequality between groups increases. Hence, while

all groups suffer from a decrease in labor demand during economic downturns, groups that are

discriminated against will suffer disproportionately more.

One might conjecture that flexible wages will eliminate inequality between groups of compa-

rable productivity. For instance, Becker (1957) and later Flanagan (1978) have argued that with

flexible wages, the wage differential should equalize the employment rates across groups. To eval-

uate this conjecture, we introduce flexible wages into the large market. From a methodological

standpoint, we develop a dynamic two-sided matching model that incorporates both learning and

flexible wages, and show that the essentially unique stable stage-game matching is dynamically

stable (Ali and Liu, 2020).

We find that flexible wages do not resolve the severe differential treatment of comparable

groups in the breakdown environment. Intuitively, they do not overcome the tension caused by

task scarcity: when only a subset of workers can be hired, those who generate higher expected

surplus get hired first. Hence, as in the case of fixed wages, b-workers are not given a chance

to perform unless and until sufficiently many a-workers have experienced breakdowns. Such a

delay further implies that employers learn more about a-workers than b-workers. Hence, employed

a-workers (i.e., those who have not generated breakdowns) earn a higher wage than employed

b-workers. Breakdown learning thus results in substantial gaps in wage and flow-earnings between

groups of almost identical expected productivity.

Figure 1 illustrates the predicted paths of average wages and those of average flow-earnings.6

Both the gap in average wages and that in average flow-earnings widen early on in the workers’

careers and persist for a substantial amount of time. If tasks are sufficiently scarce relative to

workers, the gap in flow-earnings persists throughout the workers’ careers. While our main charac-

terization assumes a zero minimum wage, we show that the dynamics are similar with a negative

minimum wage. Workers outbid each other to the point that the marginal-productivity worker

among those hired in each instant is paid the negative minimum wage. Since the employment

dynamics are identical to those under a zero minimum wage, b-workers face the same delay in

6Average flow-earnings are defined as the average payoff across both employed and unemployed workers. The
average wage is taken across employed workers only, so it is higher than average flow-earnings.
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employment.

Average wage
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Figure 1: Average wage/flow-earnings under breakdowns for groups of comparable productivity

We extend the contrast between the learning environments to workers investing in their pro-

ductivity, to inconclusive performance signals, and to prior differences being due to employers’

incorrect beliefs rather than objective differences between groups. In particular, when workers can

invest in their productivity before entering the labor market, we show that the contrast becomes

even sharper. Across all equilibria of the breakdown environment, slightly different groups invest

in significantly different amounts. Inequality across groups is even greater (i.e., spiraling is even

worse) than in the model without investment, since access to investment disproportionately ben-

efits the group that is favored after the investment stage. In the breakthrough environment, in

contrast, there generically exists an equilibrium in which comparable groups invest in compara-

ble amounts and obtain comparable lifetime earnings. Hence, the self-correcting property of the

breakthrough environment can persist with investment opportunities.

Empirical implications and evidence. Our findings are consistent with the persistent gender

pay gap among surgeons documented by Lo Sasso et al. (2011) and Sarsons (2022). In line with

our emphasis on early-career discrimination, a recent statement by the Association of Women

Surgeons finds that “[T]he disparities women face in compensation at entry level positions lead to

a persistent trend of unequal pay for equal work throughout the course of their careers.”7 Our

results are also consistent with empirical evidence of racial wage gaps that are small at early

career stages but widen with labor market experience, as documented by Arcidiacono (2003) and

Arcidiacono, Bayer and Hizmo (2010). We provide a learning-based mechanism that can explain

this growing wage gap across groups.

In contrast to the breakdown environment, the paths of employment rates, average wages, and

average flow-earnings across the two groups are closer in the breakthrough environment. Lang and

Lehmann (2012) observe that it is challenging to explain the simultaneous presence of large racial

wage and employment gaps in low-skill occupations and the absence of such gaps in high-skill

occupations. We provide a mechanism that can explain such discrepancies across occupations. To

the extent that low-skill occupations are driven by breakdown learning and high-skill occupations

7For more, see the AWS 2017 Statement on Gender Salary Equity at
https://womensurg.memberclicks.net/assets/docs/STATEMENT%20ON%20GENDER%20SALARY%20EQUITY.pdf.
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by breakthrough learning, we provide an explanation for the more persistent wage gaps and longer

unemployment duration faced by groups discriminated against in low-skill occupations.

Prejudice can be another cause of early-career discrimination: even when different groups have

the same productivity distribution, employers may mistakenly believe that one group’s distribution

is inferior to the other’s. Such prejudice may be caused by inaccurate stereotypes or information

about the workforce that enters a particular occupation. The contrast between breakthrough and

breakdown environments extends to this setting as well, as we show in section 4.4. In a breakdown

environment, prejudice among employers, even if very mild, can have dire consequences for the

group that is discriminated against.

Lastly, the spiraling of a negligible productivity difference into a substantial payoff gap is

reminiscent of the cumulative advantage known as the Matthew effect (Merton, 1968). Scarcity of

opportunities for acknowledgement is at the core of both our argument and that in Merton (1968).

While the Matthew effect has become an umbrella term for cumulative advantage resulting from

various mechanisms, our findings uncover a novel learning-based mechanism for this effect and

identify workplace environments that are more prone to it. We revisit this point in section 4.1.

Related literature

First and foremost, our paper contributes to the theoretical literature on statistical discrimination

surveyed by Fang and Moro (2011) and Onuchic (2023). Phelps (1972) and the subsequent litera-

ture (e.g., Aigner and Cain (1977), Cornell and Welch (1996), and Fershtman and Pavan (2021))

assume a significant, exogenous difference between social groups, which gives rise to inequality

between groups. In contrast, Arrow (1973) and the subsequent literature (e.g., Foster and Vohra

(1992), Coate and Loury (1993), Moro and Norman (2004), and Gu and Norman (2020)) assume

no exogenous difference between groups: inequality arises because groups coordinate on different

equilibria or specialize in different roles within an equilibrium.8

Our approach differs from both of these strands of literature. First, we consider groups that

share arbitrarily similar expected productivity. In the models building on Phelps (1972), inequal-

ity across groups disappears as the productivity difference vanishes, whereas our model shows

how a vanishingly small difference can snowball into a large payoff gap. Second, in contrast to

Arrow (1973), the across-group inequality that we uncover is not due to the existence of multiple

equilibria. Third, most papers in both strands do not model group interaction, whereas in our

model groups compete for tasks. From this standpoint our paper is related to Cornell and Welch

(1996) in the first group and Moro and Norman (2004) in the second. However, these two papers

consider static task allocation, whereas we explore the consequences of dynamic task allocation.

Our analysis also contributes two insights to the literature on cumulative discrimination (e.g.,

Blank, Dabady and Citro (2004), Blank (2005)). First, the nature of the employer learning envi-

ronment has a critical impact on the magnitude of cumulative discrimination. Second, the prospect

8Blume (2006) and Kim and Loury (2018) extend the static setup of Coate and Loury (1993) to incorporate
generations of workers. In contrast, we examine a single generation of long-lived workers whose productivity is
revealed gradually while performing tasks.
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of future cumulative discrimination casts a long shadow on workers’ investment in productivity.

Similarly to Pallais (2014), our findings emphasize the informational value of entry-level jobs. In a

two-stage tournament model, Drugov, Meyer and Möller (2024) show that an organization might

bias the selection process in favor of early strong performers, even when agents are ex ante identical

to the organization.

Our results also speak to the literature on employer learning (e.g., Farber and Gibbons (1996),

Altonji and Pierret (2001)). The learning environment can be interpreted as an intrinsic feature

of an occupation. In this respect, our work relates to Altonji (2005), Lange (2007), Antonovics

and Golan (2012), and Mansour (2012). Whereas these models assume that occupations differ

only in the frequency of signals, we allow the direction of these signals to differ across occupations

and demonstrate the importance of such direction. Hurst, Rubinstein and Shimizu (2024) also

find that the extent of discrimination varies with the nature of the tasks that workers perform;

however, in our framework tasks vary in terms of the underlying learning environment, whereas

in theirs tasks vary in terms of the amount of social interactions.

Our model leverages the tractability of Poisson bandits, which are used widely in strategic

experimentation models (e.g., Keller, Rady and Cripps (2005), Keller and Rady (2010), Strulovici

(2010), Keller and Rady (2015)).9 Both Felli and Harris (1996) and this paper use the framework

of multi-armed bandits to model labor market learning. Felli and Harris (1996) assume one

worker and two employers, whereas our small market has one employer and two workers so job

opportunities are in short supply.10 The contrasting of breakthrough and breakdown learning adds

to a recent literature that compares the implications of good-news learning and bad-news learning

in various applications: Board and Meyer-ter-Vehn (2013) on reputational incentives, Halac and

Prat (2016) on managerial attention, and Halac and Kremer (2020) on career concerns. Our mixed

learning environment, which features both conclusive breakthroughs and conclusive breakdowns,

is similar to that in Halac and Prat (2016), Che and Hörner (2018), and more recently Lizzeri,

Shmaya and Yariv (2024).

This paper contributes to a growing literature that employs bandit models to study statistical

discrimination. Li, Raymond and Bergman (2024) study an exploration-based screening algorithm

that leads to higher diversity and quality of workers. Learning about minority groups can lag

behind due to early negative signals from minority workers (Lepage, 2023), population imbalances

(Komiyama and Noda, 2024), limited attention in search (Che, Kim and Zhong, 2019), and noisier

evaluation of minority groups (Fershtman and Pavan, 2021). We show that learning about groups

disfavored at the start can lag behind also due to the nature of employer learning.

9Other areas of applications include moral hazard (e.g., Bergemann and Hege (2005), Hörner and Samuelson
(2013), Halac, Kartik and Liu (2016)), collaboration (e.g., Bonatti and Hörner (2011)), delegation (e.g., Guo (2016)),
and contest design (e.g., Halac, Kartik and Liu (2017)).

10We explore workers’ incentives to invest in productivity in section 4.2. This section is related to Bergemann
and Valimaki (1996), Felli and Harris (1996), and Deb, Mitchell and Pai (2022), since it also models bandit arms
as strategic players. However, all these models assume that the quality of the arms is exogenously given, while it
is endogenously determined in our section 4.2.

7



2 Small market

2.1 Framework

Players and types. We consider a small labor market with one employer (“she”) and two workers

(each “he”). Time t ∈ [0,∞) is continuous, and the discount rate is r > 0. Workers belong to one

of two social groups, a or b. We refer to the worker from group i ∈ {a, b} as worker i.

Before time t = 0, workers’ types are drawn independently of each other. Worker i’s type

θi is either high (θi = h) or low (θi = ℓ). The prior probability that worker i has a high type

is pi ∈ (0, 1). The employer knows (pa, pb), but she does not observe the workers’ types. We

interchangeably refer to pi as the prior belief for worker i or as worker i’s expected productivity

at time 0. We assume that worker a is ex ante more productive: pa > pb. Our focus is on groups

with comparable expected productivity, i.e., when pb is close to pa.

Task allocation. At each t > 0, the employer allocates a task either to one of the two workers

or to a safe arm. Allocating the task to the safe arm can be interpreted as the employer resorting

to a known outside option, such as a worker with some known productivity or the value from

reallocating resources to other organizational goals. A worker obtains a flow payoff w > 0 whenever

he is assigned the task. Otherwise, his flow payoff is zero. We interpret w as the fixed wage for

a worker who performs the task and normalize it without loss to w = 1. The employer obtains a

flow payoff v > 0 if the task is allocated to a high-type worker, and a flow payoff normalized to

zero if it is allocated to a low-type worker. These payoffs can be interpreted as the employer’s net

payoffs after the wage w is paid. If the employer allocates the task to the safe arm, she earns a

flow payoff s ∈ (0, v).11

Learning by allocating tasks. Learning about a worker’s type proceeds via conclusive Poisson

signals. If worker i is allocated the task over the interval [t, t + dt) and his type is θi = h, a

public breakthrough arrives with probability λhdt and no breakthrough arrives with complementary

probability. If θi = ℓ instead, a public breakdown arrives with probability λℓdt and no breakdown

arrives with complementary probability. Thus, a learning environment is characterized by a pair

of type-dependent arrival rates (λh, λℓ). A breakthrough reveals a high type and a breakdown

reveals a low type. We assume for simplicity that the employer’s payoffs are observed only at the

end of the horizon, so that the employer learns only from the Poisson signals.12 Based on which

type is revealed more quickly, we distinguish between two classes of environments:

(i) breakthrough-salient environments: λh > λℓ > 0;

(ii) breakdown-salient environments: λℓ > λh > 0.

11We multiply players’ lifetime payoffs by r, as in Keller, Rady and Cripps (2005). This normalizes the employer’s
lifetime payoff from always hiring a high type to v and a worker’s lifetime payoff from always being hired to 1.

12This formulation is, however, equivalent to an alternative formulation in which (i) the employer learns through
observable payoffs, (ii) type h generates a lump-sum payoff bh at arrival rate λh and type ℓ generates a lump-sum
payoff bℓ 6= bh at arrival rate λℓ. Any nonzero values bh, bℓ would be consistent with our analysis as long as
λhbh > s > λℓbℓ. Our chosen formulation makes it easier to compare payoffs across the learning environments.
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The relative size of the arrival rates determines whether the employer’s belief drifts down or up

in the absence of any signal. In a breakthrough-salient (resp., breakdown-salient) environment,

the employer becomes more pessimistic (resp., optimistic) that the worker has a high type. In

the symmetric environment with λh = λℓ, such an absence is uninformative of the worker’s type.

We interpret the learning environment as an intrinsic and stylized feature of how performance is

monitored or evaluated at a given job. Breakthroughs correspond to over-performance by high-type

workers, and breakdowns to under-performance by low-type workers. Therefore, breakthrough-

salient environments aim at identifying star employees, whereas breakdown-salient ones aim at

identifying misfits.

Central to our analysis are the environments in which only one type of signals is possible.

If λh > 0 and λℓ = 0, we call the environment a pure breakthrough environment or simply a

breakthrough environment. If λh = 0 and λℓ > 0, we call it a pure breakdown environment or

simply a breakdown environment. If both λh > 0 and λℓ > 0, we say that the environment is

mixed.13

Let p denote the belief threshold below which the employer switches to the safe arm, which is

derived in Lemma A.1 and given by:

p :=
rs

rv +max{λh, λℓ}(v − s)
.

This threshold depends only on max{λh, λℓ}, the higher of the two arrival rates. As expected, p

is lower than the myopic threshold s/v due to the value of learning for future allocation decisions.

Hereafter, we assume that pi > p for i ∈ {a, b}, so the employer prefers to experiment with both

workers before turning to the safe arm.

2.2 Contrast between the pure learning environments

We first observe a stark contrast between the two pure environments, and then generalize this con-

trast to mixed environments in section 2.3. We compare the two workers’ payoffs when they share

arbitrarily similar expected productivity, and analyze how this comparison depends on whether

the learning environment is pure breakthrough or pure breakdown.

Pure breakthrough learning. In each instant, the employer allocates the task to the worker

with the higher expected productivity.14 Since pa > pb, the employer first allocates the task to

worker a. Because the belief that worker a has a high type drifts down as long as no breakthrough

13In mixed learning environments, signals are still conclusive. Section 4.3 and appendix D.2 show that the
main results remain qualitatively unchanged when allowing for inconclusive signals, i.e., when low-type (resp., high-
type) workers also generate breakthroughs (resp., breakdowns) but at a lower rate than high-type (resp., low-type)
workers. Despite some loss in tractability, we establish the self-correcting property in Proposition 4.3 and the
spiraling property for sufficiently impatient players in Proposition 4.4.

14This is true in any learning environment that we consider because (i) workers’ types are binary, and (ii) the
arrival rates of signals and the employer’s type-contingent flow payoffs are the same for both workers. For a fixed
environment, workers’ Gittins indices at each time t—which determine which worker is optimally chosen at time
t—are given by the same increasing function of the workers’ expected productivities pa(t), pb(t) at time t.
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arrives, worker a is effectively given a grace period [0, t∗) over which he is employed regardless

of his performance, where t∗ measures how long it takes for the belief about worker a’s type to

drift down from pa to pb in the absence of a breakthrough. If worker a generates a breakthrough

before t∗, the employer allocates the task to him alone thereafter. Otherwise, starting from t∗, the

employer splits the task equally between the two workers until either the belief drops down to p

or a breakthrough occurs, so the workers obtain the same continuation payoff starting from t∗.

The hiring dynamics therefore go through two phases: a first phase during which worker a

is hired exclusively, and a second phase during which the two workers are treated symmetrically

starting from the symmetric belief pb. Importantly, as pb gets close to pa, the first phase [0, t∗)

shrinks to zero. The probability that worker a generates a breakthrough before t∗ converges to

zero as well. Hence, as pb ↑ pa, worker a’s advantage vanishes and the two workers obtain similar

expected payoffs. Therefore, we observe a self-correcting property of pure breakthrough learning:

a small difference in prior beliefs can result in only a small payoff advantage for worker a. This

observation and the next one are generalized in section 2.3 and proved formally in Appendix B.

Observation 2.1 (Self-correcting property of pure breakthrough learning). Let λh > 0 and λℓ = 0.

As pb ↑ pa, the expected payoff of worker b converges to that of worker a.

Pure breakdown learning. Again, the employer first allocates the task to worker a. As long

as worker a generates no breakdown, the employer becomes more optimistic that his type is high,

so she continues to hire him. Once a breakdown is realized, the employer turns to worker b. If

worker b also generates a breakdown, the employer resorts to the safe arm thereafter.

The lifetime payoff of a high-type worker a is one, since he is never fired, whereas that of a

low-type worker a is r/(λℓ + r). Once hired, the type-by-type continuation payoff of worker b is

the same as that of worker a. However, worker b faces a delay in getting hired. He obtains an

opportunity only if worker a is a low type—that is, with probability (1 − pa)—and even then, it

takes time for worker a’s low type to be revealed, which further discounts worker b’s payoff by a

factor of λℓ/(λℓ+ r). Crucially, the delay faced by worker b is independent of how close pb is to pa:

even if pb is just slightly less than pa, worker b obtains a substantially lower payoff than worker a.

In fact, worker a obtains the same payoff as if worker b did not exist: he is the first to be hired

and remains so unless and until he generates a breakdown. This stands in contrast to the pure

breakthrough environment, in which worker a loses his preferential status if he fails to generate a

breakthrough within the grace period.

Observation 2.2 (Spiraling property of pure breakdown learning). Let λℓ > 0 and λh = 0. As

pb ↑ pa, the ratio of the expected payoff of worker b to that of worker a approaches

(1− pa)
λℓ

λℓ + r
< 1. (1)

Since groups a and b have comparable productivity distributions, even if the employer were

blind to workers’ group belonging and treated them identically, her payoff would be only slightly
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lower than what she attains when she observes group belonging. In the limit as pb ↑ pa, her payoff

would be the same with and without observing workers’ group belonging. Therefore, making it

more difficult for the employer to observe group belonging would equalize workers’ payoffs without

making the employer worse off.15

2.3 Contrast across mixed learning environments

We now establish that the sharp contrast between the two pure environments observed in section

2.2 extends to mixed learning environments.

Self-correcting property of breakthrough-salient learning. Given that λh > λℓ, the em-

ployer’s belief that worker a has a high type drifts down as long as no signal arrives. Similarly to

the pure breakthrough environment, worker a is hired first and he is given a grace period [0, t∗)

over which to perform as long as he generates no breakdown. Here, t∗ is the time it takes for the

belief about worker a’s type to drift down from pa to pb in the absence of a signal:

t∗ =
1

λh − λℓ

log
pa(1− pb)

(1− pa)pb
(2)

If worker a generates a breakthrough before t∗, the employer allocates the task to him alone

thereafter. If worker a generates a breakdown before t∗, the employer switches immediately to

worker b. Otherwise, starting from t∗, the employer treats the two workers symmetrically, so they

obtain the same continuation payoff starting from t∗. As in the pure breakthrough case, as pb ↑ pa,

the grace period [0, t∗) shrinks to zero and so does worker a’s advantage.

Proposition 2.1 (Self-correcting property of breakthrough-salient learning). Let λh > λℓ > 0.

As pb ↑ pa, the expected payoff of worker b converges to that of worker a.

Spiraling property of breakdown-salient learning. Given that λℓ > λh, in the absence of

a signal the employer becomes more optimistic that the worker’s type is high. She first allocates

the task to worker a. If a breakthrough is generated, worker a is hired forever. If a breakdown is

realized, the employer switches to worker b. In the absence of either signal, the employer continues

to hire worker a. As in the pure breakdown environment, a high-type worker a is never fired,

whereas a low-type worker a enjoys a substantial period of employment before being eventually

fired. Because the reallocation of tasks is driven entirely by the occurrence of a breakdown, each

player’s expected payoff depends on λℓ but not λh. Therefore, the resulting payoff ratio is the

same as in the pure breakdown environment with the same λℓ.

Proposition 2.2 (Spiraling property of breakdown-salient learning). Let λℓ > λh > 0. As pb ↑ pa,

15In a study of group-blind hiring practices, Goldin and Rouse (2000) show that blind orchestra auditions
substantially increased the likelihood that female musicians advanced to the final round.
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the ratio of the expected payoff of worker b to that of worker a approaches

(1− pa)
λℓ

λℓ + r
< 1. (3)

The payoff ratio (3) has two components: (i) the factor (1− pa) reflects the fact that worker b

obtains a chance only if worker a has a low type, and (ii) the factor λℓ/(λℓ+r) reflects the expected

time it takes for worker a’s low type to be revealed. Even as the revelation of low types becomes

instantaneous—that is, as λℓ → ∞—the payoff ratio approaches (1 − pa) rather than one due to

a strong rank effect. Being the second hire is detrimental to worker b even under instantaneous

employer learning, since worker b never obtains a chance if worker a has a high type.

Spiraling in the symmetric environment. In the environment with λh = λℓ, the employer’s

belief stays constant in the absence of a signal. The employer starts with worker a, and fires him

if and only if a breakdown arrives revealing his low type. Therefore, the task allocation dynamics

and the workers’ payoffs are the same as in any breakdown-salient environment with the same λℓ.

The payoff ratio as pb ↑ pa is that in (3), so spiraling arises.

Remark 1 (Continuum of types). The contrast across learning environments goes beyond binary

types. For example, suppose that worker i’s type θi is uniform on [θi, θi +∆], where θa > θb > 0

and ∆ > 0 parameterizes the uncertainty about the workers’ types. As θb ↑ θa, the expected

productivity of worker b converges to that of worker a. If worker i is employed, a signal that reveals

his type arrives according to a Poisson process, and its arrival rate is λ(θi). If λ(θi) increases in

θi—e.g., if λ(θi) = λθi for some λ > 0,—the learning environment is a breakthrough-salient one

and the employer becomes more pessimistic in the absence of a signal. If λ(θi) decreases in θi,

the environment is a breakdown-salient one. The self-correcting property of breakthrough-salient

learning and the spiraling property of breakdown-salient learning continue to hold. In particular,

the upward belief drift in the absence of a signal gives worker a a payoff advantage that does not

shrink to zero even as θb ↑ θa.

2.4 Comparative statics with respect to the learning environment

Our analysis so far fixes the learning environment—that is, it fixes the arrival rates (λh, λℓ)—and

examines the limit payoff ratio as pb ↑ pa. This section performs the complementary exercise of

fixing (pa, pb) with pa > pb and examining how the payoff gap (i.e., the difference in the workers’

expected payoffs) varies with the learning environment. We parametrize a family of learning

environments by the total arrival rate λh + λℓ = λ > 0. This parametrization ranges from the

pure breakdown environment (λh, λℓ) = (0, λ) to the symmetric one (λh, λℓ) = (λ/2, λ/2) and the

pure breakthrough environment (λh, λℓ) = (λ, 0). We let Ua and Ub denote worker a’s and worker

b’s expected payoffs respectively.

Taken together, Propositions 2.1 and 2.2 imply that the limit of the payoff gap as the groups

become arbitrarily similar is discontinuous at the frontier between the breakdown-salient and

breakthrough-salient environments: for λh < λ/2, the limit payoff gap as pb ↑ pa is strictly
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positive, whereas for λh > λ/2 the limit payoff gap as pb ↑ pa is zero. Thus, an environment

that is slightly breakdown-salient generates much higher inequality between arbitrarily similar

groups than one that is slightly breakthrough-salient. We next show that in fact, for any given

pa > pb > p, the payoff gap is continuously differentiable in the arrival rates.

Lemma 2.1. Fix pa > pb > p and λ > 0, and consider the family of environments

{

(λh, λℓ) =

(

λ

2
+ δ,

λ

2
− δ

)

: δ ∈

[

−
λ

2
,
λ

2

]}

.

The payoff gap (Ua − Ub) is continuously differentiable in δ.

Ua − Ub

δ
0−λ

2

λ
2

pa = pb + 0.45

pa = pb + 0.3

pa = pb + 0.03

pa = pb + 0.003

breakthrough-salientbreakdown-salient

Figure 2: Payoff gap for four different levels of the prior difference. Parameter values are λ = 2,
s = 1/10, v = 1, r = 1, and pb = 1/3.

Figure 2 illustrates the payoff gap as a function of δ for four different levels of the prior

difference pa − pb. As the prior difference gets smaller, the contrast between breakthrough-salient

environments and breakdown-salient ones becomes more pronounced as well. The figure also

shows that the payoff gap is much more sensitive to the prior difference in breakthrough-salient

environments, dropping from significant levels down to zero as (pa − pb) ↓ 0, than in breakdown-

salient ones.

Within the class of breakdown-salient environments, the payoff gap increases in δ or, equiva-

lently, decreases in λℓ. We have argued in section 2.3 that the workers’ payoffs depend only on λℓ

in a breakdown-salient environment. The continuation payoff of each worker when this worker is

hired decreases as λℓ gets larger, because low types are revealed faster. This shrinks the payoff gap

between the two workers. Moreover, worker b expects to be hired earlier because a low-type worker

a is revealed faster. This further shrinks the payoff gap. Altogether, the payoff gap decreases in

λℓ. Intuitively, faster learning about low types in breakdown-salient environments allows to weed

out low-productivity workers from group a faster and reduce their initial advantage.

Within the class of breakthrough-salient environments, the payoff gap continues to increase in

δ or, equivalently, decreases in λℓ for environments sufficiently close to the symmetric one. The

intuition can be understood by considering the environment that is only slightly breakthrough-

salient. The employer’s belief about worker a drifts down very slowly in the absence of any signal,
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so pb is almost never reached. Thus, if worker a is fired, this is most likely due to a breakdown

rather than as a result of worker a’s expected productivity drifting down to the firing threshold.

The dynamics are thus similar to those of the breakdown-salient environment and, as in the

breakdown-salient environment, the payoff gap increases in δ for a small enough δ. Proposition

2.3 formalizes these two observations.

Proposition 2.3. Fix pa > pb > p and λ > 0, and consider the family of environments

{

(λh, λℓ) =

(

λ

2
+ δ,

λ

2
− δ

)

: δ ∈

[

−
λ

2
,
λ

2

]}

.

(i) The payoff gap (Ua − Ub) strictly increases in δ within the breakdown-salient environments.

(ii) There exists a maximal δ̃ ∈ (0, λ/2] such that the payoff gap strictly increases in δ for

δ ∈ (0, δ̃) within the breakthrough-salient environments.

Figure 2 shows that for a sufficiently large prior difference, it can be that δ̃ = λ/2, so the

payoff gap strictly increases in δ throughout its domain. The figure moreover suggests that for

δ > δ̃ the payoff gap strictly decreases in δ. Extensive numerical computations confirm such

monotonicity. Two counteracting forces are at play as δ increases. On the one hand, if we consider

the reallocation of tasks that is only driven by breakdowns, a lower λℓ makes the payoff gap larger.

However, increasing (λh − λℓ) also shortens the grace period for worker a, which in return shrinks

his payoff advantage. Our numerical computations show that if the second force dominates for

some δ, then it dominates for any larger δ′ > δ as well.

3 Large market

The small market of the previous section features a single employer choosing between two workers.

We now shift our focus to a large market with a continuum of workers from each group and a

continuum of employers. Employers and workers are matched dynamically, tasks are scarce, and

all learning is public. We establish that the contrast between the breakthrough and the breakdown

environments not only generalizes to this large market but also does so regardless of whether wages

are fixed or flexible. Notably, flexible wages are insufficient to prevent spiraling in the breakdown

environment. Furthermore, in Appendix C.2.4, we demonstrate that this holds true even if the

minimum wage is strictly negative, allowing the workers to pay employers for early opportunities.

We introduce the framework in section 3.1. Section 3.2 studies the dynamics of task alloca-

tion under fixed wages (i.e., constant across time and across all matched employer-worker pairs),

whereas section 3.3 examines the case of flexible wages.

3.1 Framework

There is a unit mass of employers, a mass of size α > 1 of workers from group a, and a mass of

size β > 0 of workers from group b. All employers and workers are long-lived and share the same
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discount rate r > 0. At each instant, each employer has one task to allocate and each worker

can take up at most one task. Crucially, there are more workers than tasks.16 Employers are

homogeneous. At t = 0, each worker’s type is drawn independently from other workers’ types.17

A worker from group i ∈ {a, b} draws a high type with probability pi. Additionally, there is a unit

mass of identical safe arms that employers can take.

Stage-game matchings and stability. In this large market, a stage-game matching specifies (i)

how workers are matched to employers, and (ii) a wage for each matched pair. We use k ∈ [0, α+β]

to index a worker and j ∈ [0, 1] to index an employer. Worker k is from group a if k ∈ [0, α] and

from group b if k ∈ (α,α + β]. In the stage game, let Dkj ∈ {1, 0} indicate whether worker k and

employer j are matched to each other. If Dkj = 1, let Wkj denote the wage paid by employer j

to worker k. Worker k’s payoff is Wkj and employer j’s expected payoff is pkv −Wkj where pk is

the probability that θk = h.18 All signals are public, so all employers share the same belief about

each worker. If Dkj = 0 for all j, worker k is unmatched and gets zero payoff. If Dkj = 0 for all

k, employer j takes a safe arm and gets a payoff of s > 0. Let D be the set of all such stage-game

matchings. In the case of fixed wages, the wage for any matched pair is fixed at w = 1, so we only

need to specify how workers are matched to employers. In the case of flexible wages, by contrast,

any nonnegative wage is allowed.

We now apply the stability concept in Shapley and Shubik (1971) to our setting. Given a

stage-game matching (D,W ), the pair (k, j) is called a blocking pair if each strictly prefers to be

matched to the other at some allowable wage rather than follow (D,W ).

Definition 1. A stage-game matching (D,W ) is stable if (i) there is no matched employer j who

strictly prefers to employ a safe arm instead of its matched worker, and (ii) there exists no blocking

pair.

In Appendices C.1.1 and C.2.1, we show that there is an essentially unique stable stage-game

matching for fixed wages and flexible wages, respectively. In this matching, the workers who are

the most productive and generate more surplus than the safe arms are matched.

Dynamic stability. In the dynamic game, a time-t history consists of all past matchings and

realized signals until t. Let Ht be the set of all time-t histories and H := ∪t>0Ht the set of all

histories. A dynamic matching µ = (µt)t>0 specifies a lottery over stage-game matchings for any

history, i.e., µt : Ht → ∆(D) for each t. We define dynamic stability of a matching µ based on the

solution concept of a stable convention in Ali and Liu (2020).19 For a given dynamic matching µ,

16The assumption that α > 1 simplifies exposition since only workers from group a will be matched at t = 0.
However, our results hold qualitatively for α < 1 as well, as long as tasks are scarce, i.e., α+ β > 1.

17We assume that workers do not know their types at time 0: they share the same prior belief as the employers
and all learning is symmetric. This assumption allows us to make a clear parallel with the small-market setting
and is consistent with our focus on workers’ early-career dynamics, where workers do not know their types yet. It
is standard in models of learning in labor markets such as Felli and Harris (1996) and Altonji and Pierret (2001).

18In the small market, v and 0 are the employer’s payoffs from hiring, respectively, a high type and a low type
after the fixed wage is paid. In the large market, we use them to represent an employer’s payoffs before any wage
is paid. This notation simplifies exposition within each market.

19Even though not crucial to our results, we assume that deviation wages are observable to all.
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let µht
denote the continuation matching after some history ht.

Definition 2. A dynamic matching µ is dynamically stable if at every t and every history ht ∈ Ht,

(i) there exists no matched employer j under µht
who strictly prefers to take a safe arm over

the time window [t, t+ dt), for some dt > 0, and then revert to µht+dt
;

(ii) there exists no matched worker k under µht
who strictly prefers to be unmatched over

[t, t+ dt), for some dt > 0, and then revert to µht+dt
;

(iii) there exist no worker-employer pair (k, j) who strictly prefer to be matched to each other at

some allowable wage over [t, t+ dt), for some dt > 0, and then revert to µht+dt
.

In Appendices C.1.2 and C.2.2, we demonstrate that prescribing the essentially unique stable

stage-game matching after each history is dynamically stable for both fixed wages and flexible

wages. Let µ∗ denote this dynamic matching. Sections 3.2 and 3.3 delve into the properties of µ∗

in the context of fixed wages and flexible wages, respectively.

3.2 Fixed wages

The intuition gained from the small-market analysis of section 2 extends to the large market

with fixed wages: comparable groups continue to have comparable payoffs in the breakthrough

environment but markedly different payoffs in the breakdown one. In addition to extending the

results from the small-market environment, the large-market analysis sheds new light on the impact

of task scarcity on the size of the payoff gap. When tasks are scarcer relative to the workforce,

the inequality between groups in the breakdown environment becomes greater.

Broad hiring under breakthrough learning. Mirroring the analysis in section 2.2, the dy-

namic allocation of tasks goes through two phases. In the first phase, all a-workers take turns

to perform tasks. If an a-worker generates a breakthrough, he “secures his job” with his current

employer: the employer allocates future tasks only to this worker. For those a-workers without a

breakthrough, the employers’ belief drops gradually until it reaches pb. At that point, a-workers

without breakthroughs are believed to be as productive as b-workers. The allocation now enters

a second phase in which the remaining employers let all remaining a-workers and all b-workers

take turns to perform tasks. Again, those who generate breakthroughs secure their jobs with their

current employers.

Breakthrough learning therefore prompts employers to try a broad set of workers. A similar

observation was made in passing by Baron and Kreps (1999) on recruitment for star jobs:

For a star job, the costs of a hiring error are small relative to the upside potential from

finding an exceptional individual. Therefore, the organization will wish to sample

widely among many employees, looking for the one pearl among the pebbles. (Baron

and Kreps (1999), p. 28-29)

Our focus is on the implications of this broad-hiring practice for group inequality. Employers

quickly extend their search to group b, so a b-worker’s payoff converges to an a-worker’s payoff as

pb ↑ pa. Thus, the self-correcting property extends to larger labor markets.
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Proposition 3.1 (Self-correction in the large market with fixed wages). Let λh > λℓ = 0, α > 1,

and β > 0. In the dynamic matching µ∗, the expected payoff of an a-worker converges to that of a

b-worker as pb ↑ pa.

Narrow hiring under breakdown learning. Breakdown learning, in contrast, leads to slug-

gishness in experimenting with new workers: if a worker is hired, he remains employed until he

generates a breakdown. This sluggishness hurts group b disproportionately no matter how close

pb is to pa, thus generalizing the intuition behind Observation 2.2 to larger labor markets.

At the start, a unit mass of a-workers are hired by the unit mass of employers. These workers

remain hired as long as they do not generate breakdowns. When one of these a-workers generates

a breakdown, he is replaced by a new a-worker for as long as one is available. So b-workers must

wait for their turn until all of the a-workers have been tried and sufficiently many of them have

generated breakdowns. Crucially, this delay does not shrink as pb ↑ pa. Therefore, the expected

payoff of a b-worker remains bounded away from that of an a-worker.

Proposition 3.2 (Spiraling in the large market with fixed wages). Let λℓ > λh = 0, α > 1, and

β > 0. In the dynamic matching µ∗, as pb ↑ pa, the limiting ratio of the expected payoff of a

b-worker to that of an a-worker is strictly less than one.

Task scarcity magnifies inequality under breakdown learning. In this large market, α

and β parametrize not only group sizes but also the relative scarcity of the unit mass of tasks.

By varying α and β, we explore how inequality among groups varies with relative task scarcity.

Proposition 3.3 observes that in the breakdown environment, inequality between groups increases

as the size of either group increases while the mass of tasks is kept fixed.

Proposition 3.3 (Inequality increases in task scarcity under breakdown learning). Let λℓ > λh =

0, α > 1, and β > 0. In the dynamic matching µ∗, as pb ↑ pa, the limiting ratio of the expected

payoff of an a-worker to that of a b-worker increases in both α and β.

Increasing β while keeping α fixed intensifies competition within group b but does not affect

the payoff of a-workers. By contrast, increasing α while keeping β fixed hurts both groups: it

intensifies competition within group a while also increasing the delay for group b. We show that

increasing α hurts group b more than it hurts group a, because adding one more a-worker uniformly

delays every b-worker’s employment. Therefore, the scarcer tasks are relative to the labor supply

from either group, the greater is the inequality between groups.

This result suggests that when job opportunities become scarcer, e.g., when labor demand falls

during an economic downturn, inequality deepens. This is consistent with the observation that

while all groups suffer during an economic downturn, some suffer disproportionately more.20

20Estimates from the Pew Research Center (https://www.pewsocialtrends.org/2011/07/26/wealth-gaps-rise-to-
record-highs-between-whites-blacks-hispanics/) show that the white-to-black and white-to-Hispanic wealth ratios
were much higher at the peak of the recession in 2009 than they had been since 1984, the first year for which the
U.S. Census Bureau published wealth estimates by race and ethnicity based on the Survey of Income and Program
Participation.

17

https://www.pewsocialtrends.org/2011/07/26/wealth-gaps-rise-to-record-highs-between-whites-blacks-hispanics/


3.3 Flexible wages

We now incorporate flexible wages into the large market. First, we delve into how wages are

determined and why prescribing the stable stage-game matching after each history is dynamically

stable. Next, we explain why flexible wages do not fix spiraling in the breakdown environment.

To quantify the extent of this spiraling, we analyze closed-form expressions for key economic

indicators, including the employment rate, the average wage, and the average flow-earnings for

each group. Finally, we discuss why relaxing limited liability does not prevent spiraling.

In the dynamic matching µ∗, there is a time-dependent marginal productivity pM (t) such that,

at each time t, workers whose expected productivity (i.e., whose probability of having a high type)

exceeds pM (t) are matched, while workers whose expected productivity lies below pM (t) are not.

Wages take a strikingly simple form: a matched worker with expected productivity pt at time

t is paid a flow wage of (pt − pM (t))v, which is the additional value that he creates relative to

the marginal-productivity worker. Notably, at time t, marginal-productivity workers obtain zero

flow-earnings, the same as all unmatched workers. All employers get the same flow profit of pM (t)v.

Proposition C.2 in the appendix establishes that prescribing the stable stage-game matching

after each history is dynamically stable. The intuition may be seen from the following three steps.

First, in a stable stage-game matching, an employer’s flow profit from a match is at least as high as

that from the safe arm, so no employer finds it profitable to reject a match and take the safe arm.

Second, no employer-worker pair has a profitable one-shot deviation, since all employers make the

same flow profit. Lastly, one can show that no worker ever finds it profitable to reject a match

in the hope of delaying the arrival of information about his type. This last point follows from

the fact that a worker’s flow-earnings are convex in his expected productivity pt at time t: flow-

earnings take the form of max
{

0, (pt − pM (t))v
}

, as Figure 3 shows.21 By Jensen’s inequality,

this implies that any signal about the worker’s type at time t—which splits the current belief

about the worker’s type into a lottery over posterior beliefs—increases the worker’s flow-earnings,

in expectation, at all future dates.

Flexible wages do not fix spiraling under breakdown learning. One plausible conjecture

is that with flexible wages, workers with similar expected productivity obtain similar earnings. This

would indeed be the case in the one-shot version of the model, because a worker with expected

productivity p obtains flow-earnings max{0, (p − pM )v}, which is indeed a continuous function of

p. In particular, there would be no discontinuity in flow-earnings between an unemployed worker

(p < pM ) and a worker who barely makes the cut (p ≈ pM ).

However, in a dynamic setting, employed workers benefit from the information that they

generate through employment: unlike unemployed workers, they have an opportunity to establish

an increasingly higher reputation and thereby command an increasingly higher wage, which quickly

21The minimum wage for an employed worker is zero since we normalize workers’ cost of effort on the task to zero.
If this cost were strictly positive, the limited liability constraint would require that the wage be weakly greater than
this cost. In the left panel of Figure 1 the average-wage paths for both groups would shift up by this cost, whereas in
the right panel the average-flow-earnings paths would remain intact once reinterpreted as average-net-flow-earnings
paths. Moreover, the green curve in Figure 3 would be reinterpreted as net flow-earnings.
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Figure 3: A two-period example with α = β = 1

sets them apart from unemployed workers. To be sure, employed workers also risk generating a

breakdown, in which case they become unemployed forever. However, such an event can occur

only if a worker has a low type and, even in this case, the event takes time to occur, during which

the low-type worker enjoys the benefits from employment. The accumulated learning for group a

thus translates into a substantial earnings advantage over group b.

We now expand on this intuition about spiraling in two steps. First, to show how learning

through employment strictly benefits a worker, consider a discretized version of the model with

only two periods and in which α = β = 1, as depicted in Figure 3. In the first period, a-workers

and b-workers, who have comparable expected productivity, have comparable flow-earnings: while

only a-workers are hired, their wage is equal to 0 since pM is equal to pa. The performance of an

a-worker in the first period splits the prior belief pa into posterior beliefs 0 and pa. Since earnings

are convex in beliefs, this splitting strictly benefits a-workers, whose expected flow-earnings in the

second period now equal w2. Hence, first-period learning causes the gap in flow-earnings to widen

in the second period.

Second, even though the benefit from learning over each short period (i.e., over [t, t + dt)) is

small, this benefit accumulates over time. Because the posterior pa is significantly more likely to

occur than the zero posterior, the delay in employment experienced by b-workers does not vanish

even as pb gets arbitrarily close to pa. By the time employers start hiring b-workers, they have

already gained substantial knowledge about a-workers’ types. Hence, the average flow-earnings of

a-workers are significantly higher than those of b-workers.

For breakthrough learning, by contrast, the delay in employment experienced by b-workers

vanishes as pb ↑ pa. Hence, a-workers do not get a chance to accumulate the benefit from employer

learning. The contrast between the two environments is formally established in Proposition C.3.

Persistent gap in employment, wage, and flow-earnings under breakdown learning.

Besides establishing the fact that spiraling continues to arise with flexible wages, we further

quantify the magnitude of such spiraling. Appendix C.2.3 computes and analyzes closed-form

expressions for the employment rate, the average wage, and the average flow-earnings of each

group.
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We first show that if task scarcity is sufficiently severe—in the sense that there are more high-

type workers than tasks—the employment gap persists throughout workers’ careers, even though

it decreases over time (Proposition C.6). Owing to this nonvanishing delay in employment faced

by group b, the wage gap is strictly increasing for a substantial amount of time. The wage gap

starts shrinking only after employed b-workers accumulate enough learning, and shrinks to zero

only in the limit t → ∞ (Proposition C.5). See Figure 4 below for an illustration.22

Average-wage gap

t
0

Average-flow-earnings gap

t
0

Figure 4: Average-wage gap and average-flow-earnings gap as pb ↑ pa

The gap in flow-earnings is due to the combination of the wage gap and the employment

gap. Like the wage gap, the gap in flow-earnings expands early in workers’ careers and begins to

gradually shrink only in the latter part of their careers (Proposition C.4). But unlike the wage

gap, whether the gap in flow-earnings shrinks to zero depends on how scarce the tasks are. If

there are more high-type workers than tasks, this gap remains bounded away from zero even in

the limit t → ∞. This is due to the nonvanishing employment gap in the limit t → ∞.

Spiraling persists even with negative wages. A natural question is whether spiraling would

disappear if workers were able to accept negative wages in return for early employment opportu-

nities. Appendix C.2.4 shows that the persistence of spiraling under flexible wages is not driven

by the limited liability requirement, which we relax to a strictly negative lower bound on wages.

Intuitively, since both a-workers and b-workers are willing to accept such negative wages, a-workers

also lower their wages and outbid b-workers down to the lower bound. This intensifies competition

among workers and benefits only the employers. The dynamic matching of workers and employers

continues to be the same as that under limited liability, whereas all wages are now reduced by the

same amount as the lower bound. In particular, the marginal-productivity worker at any instant

now pays the employer the maximum amount that he can pay. As long as the lower bound is

not too negative—which corresponds to b-workers having a strictly positive continuation payoff at

t = 0—such a matching continues to be dynamically stable (Proposition C.7). Workers are will-

ing to incur negative flow-earnings so as to generate signals about their productivity. Therefore,

b-workers continue to face the exact same delay as under limited liability.

22Figure 1 and Figure 4 assume the same parameter values: α = 5/4, β = 1, pa = 1/2, λℓ = 1, and r = 1.
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4 Discussion and robustness

4.1 Connection to the Matthew effect

The spiraling of a negligible productivity difference into a substantial payoff gap is reminiscent of

the cumulative advantage known as the Matthew effect (Merton, 1968). In coining the term, Mer-

ton (1968) observed that scientists of established reputation tend to receive a disproportionately

larger share of the credit for joint and simultaneous discoveries, which advances their reputation

further. He observed that the effect is intrinsically linked to scarcity of opportunities for acknowl-

edgment. Scarcity of opportunities for workers to prove their productivity is what drives spiraling

in breakdown environments as well.

The Matthew effect has become an umbrella term for cumulative advantage that results from

various mechanisms in science and beyond (Rigney (2010)). Merton (1968) observed that in sci-

ence, reputation buildup could be due to greater visibility in the scientific community, skewed

citation patterns, and institutional prestige and resources. A recent literature in economics ex-

plores various such mechanisms.23 We contribute a novel learning-based mechanism through which

the Matthew effect could arise, as well as a classification of workplace environments into more and

less prone to this effect. Most closely related to our work is Bar-Isaac and Lévy (2022), in which

task allocation also provides workers with opportunities to generate signals about productivity.

Whereas that paper focuses on the relationship between signal informativeness and worker’s ef-

fort, ours focuses on the importance of the direction of employer learning for whether the Matthew

effect arises.

4.2 Investment in productivity

If the workers had equal access to an opportunity to invest in productivity before entering the

labor market, would their lifetime employment prospects equalize? The answer depends on the

equilibrium implications of this investment opportunity. Access to investment could presumably

level the playing field if incentives to invest were slightly stronger for group b, but it could al-

ternatively amplify the expected productivity gap. We study this question in a variation of the

small-market model with a pre-market investment stage that involves three steps: (i) workers

draw their pre-investment types independently of each other, according to the priors (pa, pb); (ii)

a low-type worker of either group draws his cost of investment c ∈ [0, 1] according to a cumulative

distribution function F and decides whether to invest; (iii) if he invests, he pays cost c and his

type becomes high with probability π ∈ (0, 1). A worker’s investment cost, investment decision,

and post-investment type are observed only by this worker. Subsequently, workers enter the labor

market at t = 0.

23For instance, the Matthew effect could arise due to the development of match-specific skills in labor markets
in Gibbons and Waldman (1999), due to peer effects and differential institutional resources in Oyer (2006), due to
the sensitivity of the production technology to the worker’s ability in Gabaix and Landier (2008), due to heightened
confidence from relative performance in Murphy and Weinhardt (2020), due to the friendliness of the workplace
environments and fertility choices in Azmat, Cuñat and Henry (2023) etc.
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An equilibrium is characterized by a pair of cost thresholds (ca, cb) and a pair of post-investment

beliefs about each worker’s productivity (qa, qb). A worker i who has a low type makes the

investment if his realized cost is below ci, and the employer’s beliefs are consistent with this

investment strategy. A key object in the analysis is worker i’s expected benefit Bi(qa, qb) from

investment given the employer’s post-investment belief pair (qa, qb). Lemma 4.1 establishes that,

in both the pure breakdown and the pure breakthrough learning environments, if the employer

believes that worker i’s expected productivity post-investment is higher than worker −i’s, then i’s

benefit from investment is strictly higher than −i’s.24 Worker i would be the first to be allocated

the task: investment is likely to avoid a breakdown or increase the chance of a breakthrough within

the given grace period.

Lemma 4.1. In both pure learning environments, if qi > q−i, then Bi(qa, qb) > B−i(qa, qb). For

each i, Bi(qa, qb) is continuously differentiable in the pure breakthrough environment, but it is

discontinuous at qa = qb in the pure breakdown environment.

The worker who is favored post-investment has a stronger incentive to invest, which in turn

rationalizes the employer’s decision to favor this worker in equilibrium. This self-fulfilling force—

also noted by Coate and Loury (1993)—leads to multiple investment equilibria. In fact, investment

can reverse the initial ranking of groups: if (pa − pb) is sufficiently small, there exist equilibria in

which worker b invests more than worker a and becomes favored post-investment. However, our

focus is on the inequality across groups rather than on the identity of the favored group per se. We

characterize the lowest payoff inequality attained across all equilibria as pb ↑ pa in each learning

environment.

Proposition 4.1 establishes that the lowest payoff inequality continues to be zero in the pure

breakthrough environment. The self-correcting property of breakthroughs is not disturbed by

the presence of investment. The proof builds on two observations. First, when pa = pb, there

always exists a symmetric equilibrium in which the workers use the same cost threshold and

therefore qa = qb. Second, under breakthrough learning the benefit from investment is continuously

differentiable in (qa, qb). We apply the implicit function theorem to establish that, when pb is

within a small neighborhood of pa, there exists an equilibrium in which cost thresholds (ca, cb) and

post-investment probabilities (qa, qb) are within a small neighborhood of those in the symmetric

equilibrium. This equilibrium could either preserve or reverse the prior ranking of the workers.

Proposition 4.1. Suppose that F is weakly convex. Generically,25 as pb ↑ pa, there exists an

equilibrium in which the two workers’ expected payoffs as well as their post-investment probabilities

of having a high type converge.

24In the breakthrough environment, if qa = qb = q, then Ba(q, q) = Bb(q, q) because the employer optimally
splits her task between the workers. The workers’ benefits are equal also in the breakdown environment, assuming
that the employer randomizes equally between workers at t = 0 if qa = qb.

25The notion of genericity here is one in which fixing all parameters of the model except for (pa, π), the set of
values of (pa, π) ∈

(

p, 1
)

× (0, 1) for which the proposition does not hold has measure zero. If F is not weakly
convex, our preliminary analysis suggests that a version of this result continues to hold according to a different,
more involved notion of genericity based on prevalent and shy sets.
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By contrast, access to investment not only fails to tame the propensity of pure breakdown

learning to magnify small prior differences, but makes it worse. Across all investment equilibria, the

expected payoffs of ex ante comparable workers are even further apart than in the no-investment

benchmark of section 2.1.

Proposition 4.2. As pb ↑ pa, in any pure-strategy equilibrium with qi > q−i, the ratio of the

expected payoff of worker −i to that of worker i is at most (1− qi)λℓ/(λℓ+ r) < 1, which is strictly

lower than the payoff ratio (1− pa)λℓ/(λℓ + r) in the no-investment benchmark.

Spiraling persists because the benefit from investment is discontinuous in (qa, qb). We show

that as pb ↑ pa, there exist only two equilibria with a strict ex post ranking of workers and they are

the same modulo the workers’ identities. Inequality between workers increases due to investment.

In the no-investment benchmark, the payoff ratio is pinned down by pa. Here, because the worker

who is favored post-investment—whoever that might be—has a strong enough incentive to invest,

his post-investment probability is strictly higher than pa. Therefore, for any realized investment

cost, the ratio between the payoff of the worker who is discriminated against post-investment to

that of the worker who is favored—after factoring in the investment cost—is lower than the ratio

in the no-investment benchmark. There exists also a mixed equilibrium in which qa = qb—the

workers are post-investment identical—due to worker b investing slightly more than worker a. This

equilibrium relies on the employer randomizing asymmetrically between workers at t = 0 so as

to provide slightly stronger investment incentives for worker b. Whether such an equilibrium is

empirically plausible depends on the employer’s ability to credibly and precisely randomize in this

way.

Our characterization of equilibria allows us to compare learning environments not only in

terms of the workers’ payoffs, but also in terms of their investment behaviors. Proposition D.1 in

the appendix shows that with sufficiently fast learning, the worker favored (discriminated) post-

investment invests strictly more (less) under breakdowns than under breakthroughs. This ranking

is robust across all investment equilibria. Therefore, the breakdown environment is marked by

greater polarization in workers’ investment behavior. One key implication is that for sufficiently

fast learning and effective investment (π ≈ 1), the employer strictly prefers the breakdown environ-

ment to the breakthrough one because the strong investment incentives provided by the breakdown

environment guarantee that the post-investment favored worker is almost surely (in the limit as

λℓ, λh become arbitrarily large) a high type.

4.3 Inconclusive learning environments

Our baseline model has assumed that signals were type-specific: only the high type can generate a

breakthrough and only the low type can generate a breakdown. We now consider environments in

which both types generate the same signals, albeit at different rates—hence, the arrival of a signal

is inconclusive of the worker’s type. The environment is characterized by a pair of arrival rates

(λh, λℓ) ∈ R
2
+ such that λθ > 0 is the arrival rate of the signal if the worker’s type is θ ∈ {h, ℓ}. We

define the environment to be an inconclusive breakthrough environment if the signal suggests a high
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type (i.e., λh > λℓ > 0) and an inconclusive breakdown environment otherwise (i.e., 0 < λh < λℓ).

If λh = λℓ, signals are uninformative.

The self-correcting property extends to inconclusive breakthrough environments. Even though

the employer does not assign the task to worker a indefinitely upon the realization of the first

signal, there is still a time window [0, t∗) over which worker a should generate a signal in order

to continue being allocated the task exclusively. If no signal arrives during this time window, the

belief about worker a’s type drops to pb, at which point both workers receive the same continuation

payoff. It continues to be the case that as pb ↑ pa, the duration t∗ shrinks to zero and hence the

probability that worker a generates a signal within the time window vanishes as well. The two

workers’ limit payoffs are therefore equal.

Proposition 4.3. For any λh > λℓ, the two workers’ payoffs converge as pb ↑ pa.

The spiraling property generalizes to inconclusive breakdown environments as well, provided

that players are sufficiently impatient. The departure from a conclusive breakdown environment

brings the complication that the employer might hire workers who have generated signals in the

past. But as long as pa > pb, worker a is the first to be hired and stays employed in the absence of

a signal. The expected time until the first signal is significant. If players are sufficiently impatient,

this already leads to a significant payoff advantage for worker a.26 Proposition 4.4 formalizes this

result.

Proposition 4.4. For any λh < λℓ, the two workers’ payoffs do not converge as pb ↑ pa if:

λh

λh + r
pa +

λℓ

λℓ + r
(1 − pa) <

1

2
.

4.4 Misspecified prior belief

Spiraling arises in the pure breakdown environment even if the groups are identical but the em-

ployer mistakenly misperceives them as different. Suppose the workers have the same probability

ptrue of having a high type, but the employer believes that worker b has a lower probability

pmis < ptrue.
27 In this case, even a very slight misspecification grants a large payoff disadvantage

to worker b. Worker a is still hired first based on the employer’s misspecified belief and the workers’

payoffs coincide with those in Proposition 2.2 (with pa and pb replaced by ptrue).
28

The self-correcting property of the breakthrough environment continues to hold as well, in

the sense that a slight misspecification will not have large payoff consequences for the workers.

Duration t∗, which is analogous to the grace period in (4), corresponds to the time it takes for the

belief about worker a’s type to drift down from ptrue to pmis. As the amount of misspecification

vanishes to zero, so does t∗. At time t∗, the true probability that worker a has a high type is pmis,

26The sufficient condition for spiraling can be also interpreted in terms of arrival rates (λh, λℓ) rather than the
discount rate r: signals need to be sufficiently infrequent, i.e., λh, λℓ sufficiently small.

27Bohren et al. (2023) refer to this as “inaccurate statistical discrimination.” Bohren, Imas and Rosenberg (2019)
identify discrimination driven by misspecified beliefs in an experimental setting.

28See payoff expressions (5) and (6) in appendix B.
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whereas the true probability that worker b has a high type is ptrue. However, the employer believes

that both probabilities are pmis, so she splits the task equally between workers from t∗ onwards.

We let Ûa (pmis, ptrue) and Ûb (pmis, ptrue) be the continuation payoffs of worker a and worker

b, respectively, at time t∗. Because each worker gets half a task but worker a has a lower true

probability of having a high type, his payoff Ûa (pmis, ptrue) is lower than Ûb (pmis, ptrue). Crucially,

as pmis converges to ptrue, the two payoffs get arbitrarily close. To extend the proof of Proposition

2.1 to the misspecified-prior case, we let t∗ be the time it takes for the belief to drop from ptrue to

pmis and replace Ui(pb, pb) with Ûi (pmis, ptrue) for the workers’ payoffs.

Belief misspecification is highly relevant to discussions of labor market discrimination. Lang

and Lehmann (2012) provide evidence that suggests the presence of widespread mild prejudice

among employers. Our results show that prejudice, even when infinitesimally mild, has very

different implications in different learning environments. The breakthrough environment works

well against prejudice, whereas the breakdown environment propagates it further.

5 Concluding remarks

This paper studies the consequences of different employer learning environments for social groups

of comparable expected productivity. Whether the learning environment is closer to a breakdown

environment or a breakthrough one has important implications for whether discrimination persists

in the long run. Lange (2007) observed that “how economically relevant statistical discrimination

is depends on how fast employers learn about workers’ productive types.” Our analysis provides

an additional perspective: what matters for statistical discrimination is not only the speed of

employer learning, but also the direction of this learning.

Our analysis sheds light on how negative shocks to labor demand during economic downturns

impact inequality across groups. We predict that breakdown-like occupations will be prone to

significant increases in inequality as jobs become scarcer. To the extent that low-skill occupa-

tions tend to be predominantly breakdown environments and high-skill occupations tend to be

breakthrough ones, our result is in line with substantial evidence that the groups who are hit the

hardest in recessions are those who are already discriminated against and in low-skill occupations.

Moreover, our results provide a learning-based explanation for the empirical observation that racial

wage gaps are more present in low-skill occupations, which are typically breakdown-like, but are

largely absent in high-skill ones (Lang and Lehmann (2012)). By the same reasoning, we explain

why wage gaps might even widen with labor market experience in low-skill occupations, as docu-

mented by Arcidiacono, Bayer and Hizmo (2010). Our theoretical framework and our predictions

regarding the employment gap, the wage gap, and the flow-earnings gap can guide future empirical

investigation of discrimination in breakthrough versus breakdown occupations.

Besides these testable predictions, one natural empirical question for which our framework

can be useful is whether temporary affirmative action has long-lasting effects for groups that are

discriminated against (Miller and Segal (2012), Kurtulus (2016), Miller (2017)). The empirical

evidence on this question is mixed. One corollary of our analysis is that in breakdown environ-
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ments, a requirement for employers to give a chance to group b first until the two groups’ expected

productivities are equalized would dramatically improve the prospects of b-workers. Once such a

requirement is lifted, employers are willing to treat the two groups identically.29 Such recommen-

dation does not apply to breakthrough environments.

Finally, our framework may be used to address questions beyond the scope of the current

paper. First, an employer may have to allocate multiple tasks that entail different employer

learning dynamics. For instance, if an employer has both a breakthrough task and a breakdown

task, how will she allocate the tasks among workers from comparable social groups? Second, in

certain contexts the learning environment is an endogenous choice of the employer rather than

exogenously fixed. Our extension with productivity investment by workers identifies circumstances

under which the employer prefers breakdown learning due to stronger investment incentives. More

generally, is the endogenous choice of the learning environment more likely to lead to breakdown

or breakthrough learning? If the employer can adjust her choice of the learning environment in

response to the workers’ expected productivities (as in Che and Mierendorff (2019)), how does

this affect the lifetime payoffs of comparable groups? Third, our framework can prove useful to

understanding incentives for occupational segregation: workers from groups that are discriminated

against have an incentive to sort into breakthrough-like occupations in order to avoid spiraling.

We leave these questions to future research.
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A Preliminary results

A.1 Distribution of performance signals for star and guardian jobs

Replicating Figure 2-2 in Baron and Kreps (1999), the dashed curves in Figure 5 depict the probability
densities of performance signals for a guardian job and a star job when the support of performance signals
is an interval. The bars depict the probabilities when the performance signals are binary, as in our baseline
model. “Breakdown” and “no breakdown” correspond to signals in a guardian job, whereas “breakthrough”
and “no breakthrough” to those in a star job. The bars do not condition on a worker’s type, but they
would look similar if the probabilities were conditional on a low type under breakdowns (Figure 5a) and
conditional on a high type under breakthroughs (Figure 5b). The figure suggests how to empirically test
whether a job is a star (breakthrough-like) job or a guardian (breakdown-like) one: a right-skewed density
suggests a star job while a left-skewed density suggest a guardian job. See footnote 5 for examples of such
empirical studies.

performance

no breakdownbreakdown

(a) Guardian jobs

performance

breakthroughno breakthrough

(b) Star jobs

Figure 5: Distribution of performance signals (adapted from Baron and Kreps (1999))
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A.2 Derivation of the safe-arm threshold p for section 2.1

Lemma A.1. For any environment described by the pair of arrival rates (λh, λℓ), the belief threshold at
which the employer switches to the safe arm is given by

p :=
rs

rv +max{λh, λℓ}(v − s)
.

Proof of Lemma A.1. Consider first λh > λℓ. Fixing an arbitrary prior belief p and threshold belief p < p,
this corresponds to duration

t∗
(

p, p
)

:=
1

λh − λℓ
log

(

p/(1− p)

p/(1− p)

)

.

Conditional on the worker having a high type, the payoff of the employer is

v
(

1− e−rt∗(p,p)
)

+
(

1− e−λht
∗(p,p)

)

e−rt∗(p,p)v + e−λht
∗(p,p)e−rt∗(p,p)s,

whereas conditional on the worker having a low type, the employer’s payoff is

λℓ + re−(λℓ+r)t∗(p,p)

λℓ + r
s

because the arrival probability of a breakdown at t ≤ t∗(p, p) is λℓe
−λℓt and the employer’s payoff is e−rts.

Hence, the expected payoff of the employer simplifies to

VBT (p, p) := pv − pe−(λh+r)t∗(p,p)(v − s) + (1 − p)
λℓ + e−(λℓ+r)t∗(p,p)

λℓ + r
s.

The smooth pasting condition yields

∂VBT (p, p)

∂p
= 0 ⇒ p =

rs

rv + λh(v − s)
.

Next, consider λℓ > λh. If the worker has a high type, the payoff of the employer is v: the worker
is never fired, despite whether a breakthrough arrives or not. If the worker has a low type, the payoff
of the employer equals the continuation payoff from the safe arm once a breakdown is realized, which is
λℓs/(λℓ+ r). Hence, the employer’s expected payoff if she experiments with a worker given prior belief p is

VBD(p) := pv + (1− p)
λℓs

λℓ + r
.

At the threshold p = p, the employer is indifferent between the worker and the safe arm: the value matching
condition is VBD(p) = s. This implies the threshold

p =
rs

rv + λℓ(v − s)
.

�

B Proofs for section 2

Proof of Proposition 2.1. The employer initially allocates the task exclusively to worker a. If worker a
generates a breakdown, the employer switches to worker b. If worker a generates a breakthrough, worker a
is hired forever. In the absence of either signal, this initial allocation lasts until the employer’s belief that
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a has a high type decreases to pb, which happens at time t∗, where t∗ is defined by

pae
−λht

∗

pae−λht∗ + (1− pa)e−λℓt∗
= pb, i.e., t∗ =

1

λh − λℓ
log

pa(1 − pb)

(1− pa)pb
. (4)

If t∗ is reached without a signal, the task is split equally between the two workers until either one of them
generates a signal or the belief about the workers’ types reaches p. If worker i generates a breakthrough,
the task is allocated only to him forever after. If worker i generates a breakdown, the task is allocated only
to worker −i until −i generates a breakdown or p is reached.

We let Ui(pa, pb) denote worker i’s payoff given belief pair (pa, pb). Note that Ua(p, p) = Ub(p, p) =: U(p)
for any p ∈ (p, 1). Over [0, t∗), worker a generates a breakthrough with probability pa

(

1− e−λht
∗
)

and a

breakdown with probability (1 − pa)
(

1− e−λℓt
∗
)

. If a breakthrough arrives, worker a’s payoff is 1. If a
breakdown arrives at time t, worker a gets (1 − e−rt). If no signal arrives, worker a’s payoff consists of
the flow payoff from [0, t∗), which is 1− e−rt∗ , and the continuation payoff from time t∗ onward, which is
U(pb). Therefore, worker a’s total expected payoff is

Ua(pa, pb) = pa

(

1− e−λht
∗

)

+ (1− pa)

(

1− e−λℓt
∗

− (1− e−(λℓ+r)t∗)
λℓ

λℓ + r

)

+

(

pae
−λht

∗

+ (1− pa)e
−λℓt

∗

)(

1− e−rt∗ + e−rt∗U(pb)
)

If worker a generates a breakdown before t∗, which occurs with instantaneous probability (1− pa)e
−λℓtλℓ,

worker b gets discounted payoff e−rtK, where K is the continuation payoff

K := pb(1 − e−λht) + (1− pb)

(

1− e−λℓt − (1− e−(λℓ+r)t)
λℓ

λℓ + r

)

+ (pbe
−λht + (1− pb)e

−λℓt)(1− e−rt)

and t := 1/(λh − λℓ) log
(

(pb(1− p))/(p(1− pb))
)

is the time it takes for the belief to drop from pb to the
safe-arm threshold p. On the other hand, if a generates a breakthrough over [0, t∗), worker b gets zero
payoff. Integrating over all t ∈ [0, t∗), this payoff expression becomes

(1− pa)
λℓ

λℓ + r

(

1− e−(λℓ+r)t∗
)

K.

If a does not generate any signals, which happens with probability pae
−λht

∗

+(1− pa)e
−λℓt

∗

, worker b gets
e−rt∗U(pb, pb). Therefore, worker b’s total expected payoff is

Ub(pa, pb) = (1− pa)
λℓ

λℓ + r

(

1− e−(λℓ+r)t∗
)

K + (pae
−λht

∗

+ (1− pa)e
−λℓt

∗

)e−rt∗U(pb).

As pb ↑ pa, t
∗ → 0, so the two workers’ payoffs are equal in the limit to U(pb). �

Proof of Proposition 2.2. We first observe that in any breakdown-salient environment, the expected payoff
of each player depends on λℓ but not λh. If worker a has a high type, his payoff is 1: because the belief
about θa drifts upwards in the absence of a signal, worker a continues to be hired despite whether he
generates a breakthrough or not. If he has a low type, his payoff is (1− e−rt) if the breakdown arrives at
t, and this arrival time t follows density λℓe

−λℓt. Hence, worker a’s expected payoff is

pa + (1− pa)
r

λℓ + r
, (5)

which is independent of pb. Similarly, if the employer starts hiring worker b at time t, then worker b’s
payoff is

e−rt

(

pb + (1− pb)
r

λℓ + r

)

.
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Conditional on worker a having a low type, this time t is distributed according to density λℓe
−λℓt. Hence,

worker b’s expected payoff is

(1− pa)
λℓ

λℓ + r

(

pb + (1− pb)
r

λℓ + r

)

. (6)

Evaluating the limit as pb ↑ pa, worker b’s expected payoff converges to

(1− pa)
λℓ

λℓ + r

(

pa + (1− pa)
r

λℓ + r

)

,

which is equal to the fraction (1− pa)λℓ/(λℓ + r) of worker a’s payoff. �

Proof of Lemma 2.1. For any breakthrough-salient environment λh > λℓ > 0, the proof of Proposition 2.1
derives the payoff gap Ua(pa, pb) − Ub(pa, pb), which does not depend on U(pb), the continuation payoff
defined as in the proof of Proposition 2.1, and it simplifies to

Ua(pa, pb)− Ub(pa, pb) = pa

(

1− e−λht
∗

)

+ (1− pa)

(

1− e−λℓt
∗

− (1− e−(λℓ+r)t∗)
λℓ

λℓ + r

)

+

(

pae
−λht

∗

+ (1− pa)e
−λℓt

∗

)(

1− e−rt∗
)

− (1− pa)
λℓ

λℓ + r

(

1− e−(λℓ+r)t∗
)

K

= 1−
(

pae
−λht

∗

+ (1− pa)e
−λℓt

∗

)

e−rt∗ − (1− pa)
λℓ

λℓ + r

(

1− e−(λℓ+r)t∗
)

(1 +K),

where K, t, and t∗ are defined in the proof of Proposition 2.1. Because p, t∗ and K all are continuously
differentiable in (λh, λℓ), this difference is continuously differentiable in (λh, λℓ) as well. By a similar
argument, the proof of Proposition 2.2 gives the payoff gap in any breakdown-salient environment, which
after substituting in λℓ = λ/2− δ simplifies to:

Ua(pa, pb)− Ub(pa, pb) =
(−2δ + λ)2(pa − pb(1− pa)) + 4(λ− 2δ)par + 4r2

(λ− 2δ + 2r)2
.

It is immediate that this is continuously differentiable in δ ∈ [−λ/2, 0). So it only remains to check that
the limits of Ua(pa, pb)− Ub(pa, pb) and of its derivative as δ ↑ 0 and δ ↓ 0 coincide.

Substituting (λh, λℓ) = (λ/2 + δ, λ/2 − δ) into the payoff gap for a breakthrough-salient environment
above and taking the limit δ ↓ 0, we obtain

Ua(pa, pb)− Ub(pa, pb) → 1−
λ(1 − pa)(λ(1 + pb) + 4r)

(λ+ 2r)2
=

λ2(pa − pb(1− pa)) + 4λpar + 4r2

(λ+ 2r)2
.

Differentiating this payoff gap with respect to δ and taking its limit as δ ↓ 0 gives us

lim
δ→0

∂(Ua(pa, pb)− Ub(pa, pb))

∂δ
=

8(1− pa)r(λpb + 2r)

(λ+ 2r)2
> 0.

On the other hand, taking the limit of the payoff gap for the breakdown-salient environment above as δ ↑ 0,
we obtain

Ua(pa, pb)− Ub(pa, pb) →
λ2(pa − pb(1− pa)) + 4λpar + 4r2

(λ+ 2r)2

which is exactly the limit obtained from the limit of a breakthrough-salient environment. Moreover,
differentiating the breakdown-salient payoff gap with respect to δ and taking its limit as δ ↑ 0 gives
8(1−pa)r(λpb+2r)

(λ+2r)2 . Hence, the payoff gap is continuously differentiable in a neighborhood of δ = 0. �

Proof of Proposition 2.3. Consider first the class of breakdown-salient environments parametrized by λ.
From the proof of Lemma 2.1, the payoff gap is

Ua(pa, pb)− Ub(pa, pb) =
(−2δ + λ)2(pa − pb(1− pa)) + 4(λ− 2δ)par + 4r2

(λ− 2δ + 2r)2
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the derivative of which with respect to δ is

∂(Ua(pa, pb)− Ub(pa, pb))

∂δ
=

8(1− pa)r(2r + λpb − 2δpb)

(2r + λ− 2δ)3
> 0

for δ ∈ [−λ/2, 0]. By the continuity of the first derivative of the payoff gap established in Lemma 2.1, there
exists a maximal δ̃ ∈ (0, λ/2] such that the gap strictly increases in δ for δ ∈ (0, δ̃) as well.

�

C Proofs for section 3

C.1 Proofs for section 3.2 (Large market with fixed wages)

C.1.1 Stable stage-game matchings

Consider a stage game. Let G denote the CDF of the distribution of the expected productivity pk of worker
k ∈ [0, α+ β]. Hence, (α+ β)G(p) is the mass of workers with pk 6 p. At time 0, pk is either pa or pb, so
G(p) equals 0 if p < pb,

β
α+β if pb 6 p < pa, and 1 if p > pa. As workers are matched to employers, more is

learned about their types, so G evolves over time. The evolution of G depends, of course, on the learning
environment. Throughout, we let G(p−) := limx↑p G(x) denote the left-hand limit of G at p.

We first establish that employers are matched to the most productive workers in any stable stage-game
matching, provided that these workers are better than the safe arm. We look at the unit mass of the most
productive workers, and let p∗(G) correspond to the least productive worker in this unit mass.

Definition 3. Fix G. Let p∗(G) be the expected productivity such that:

(1−G(p∗(G)
−
))(α + β) > 1, and (1 −G(p−))(α + β) < 1, ∀p > p∗(G).

To simplify notation, we sometimes omit the dependence of p∗ on G when no confusion arises. Let ps
be the belief at which a worker generates the same flow payoff to an employer as a safe arm does, that is
psv−w = s where w = 1 is the fixed wage. Hence, ps = (s+w)/v. (We assume that pi > ps for i ∈ {a, b}.)
Lemma C.1 shows that worker k is matched if pk > max{p∗, ps} and unmatched if pk < max{p∗, ps}.

Lemma C.1 (Most productive workers are matched). Fix G and a stable stage-game matching (D,W ).
Let d(p) denote the fraction of workers with expected productivity p who are matched to an employer.

1. Suppose that p∗ > ps. Then d(p) equals 1 if p > p∗, and 0 if p < p∗. If G is continuous at p∗, then
d(p∗) = 0. If G is discontinuous at p∗, then d(p∗) is given by:

(1−G(p∗)) (α+ β) + d(p∗)
(

G(p∗)−G(p∗−)
)

(α+ β) = 1.

2. Suppose that p∗ 6 ps. Then d(p) equals 1 if p > ps, and 0 if p < ps. Moreover, d(ps) can take any
value in [0, 1] subject to:

(1−G(ps)) (α+ β) + d(ps)
(

G(ps)−G(p−s )
)

(α+ β) 6 1.

Proof. First, an employer never matches with worker k if pk < ps. Second, if a less productive worker is
matched, then a more productive worker must be matched as well. By way of contradiction, suppose that
for a given p1 < p2, a p1 worker is matched but a p2 worker is not. The employer who is matched to the
p1 worker can form a blocking pair with the p2 worker since p2v − w > p1v − w and w > 0.

We now argue that, if p∗ > ps, no employer takes the safe arm. Suppose otherwise. Then there exists
an unmatched worker k with pk > p∗ > ps. Then an employer who is taking the safe arm can form a
blocking pair with this worker k.

We next argue that, if p∗ 6 ps, then all workers whose p is strictly above ps must be matched. Suppose
otherwise that some worker k is unmatched and pk > ps. The mass of workers whose p is weakly above
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pk is strictly smaller than 1. Hence, there exists an employer who is either matched to a worker k′ with
pk′ < pk or taking the safe arm. This employer can form a blocking pair with the unmatched worker k.

�

Lemma C.1 characterizes the set of stable stage-game matchings for a given G. This set need not be
a singleton. However, multiplicity arises only when (1−G(ps)) (α + β) < 1 and G(ps) − G(p−s ) > 0, as
covered by part 2 of Lemma C.1. In this case, employers are indifferent between a positive mass of workers
whose productivity is ps and the safe arms. Because stable stage-game matchings are specified uniquely
up to this case, we say that the stable stage-game matching is essentially unique.

C.1.2 Dynamic stability

In the dynamic setting, G evolves endogenously over time due to learning about workers’ types. To
argue that prescribing the essentially unique stable stage-game matching characterized in Lemma C.1 is
dynamically stable, we show that conditions (i)-(iii) in Definition 2 are satisfied. Fix any history ht ∈ Ht.
Let Ght denote the CDF of pk at history ht and µ∗

ht
the essentially unique stable stage-game matching

given Ght , as in Lemma C.1.

Proposition C.1. In both the pure breakthrough environment and the pure breakdown one, prescribing the
stable stage-game matching µ∗

ht
at every ht is dynamically stable.

Proof. (i) At ht, a matched employer j’s flow payoff is at least s because max{p∗(Ght), ps} > ps. The
distribution G(ht+dt), and hence j’s continuation payoff from t + dt on, does not depend on j’s
deviation. Hence, she does not strictly prefer to take a safe arm over [t, t + dt) and then revert to
µ∗
ht+dt

.

(ii) Suppose that worker k is matched at history ht according to µ∗
ht

. Let p(t) be this worker’s expected
productivity at history ht. We focus on the case in which p(t) ∈ (0, 1), since if p(t) = 1 the worker
will be matched forever and if p(t) = 0 the worker will be unmatched forever. We next show that
the worker does not strictly prefer to stay unmatched for [t, t+ dt) and then revert to µ∗

ht+dt
.

(a) We first consider breakdown learning. Pick any τ > t and suppose the worker is employed over
[t, τ) for as long as no breakdown arrives. Let p(τ) denote the worker’s expected productivity
at time τ conditional on no breakdown in [t, τ) and OM(τ) the expected amount of time that
the worker is employed in [t, τ). Then,

OM(τ) =

∫ τ

t

(

p(t) + (1− p(t))e−λℓ(x−t)
)

dx =
1

λℓ

(

λℓp(t)(τ − t) + (1− p(t))
(

1− e−λℓ(τ−t)
))

.

Expressing p(τ) in terms of p(t) from

p(τ) =
p(t)

p(t) + (1− p(t))e−λℓ(τ−t)
,

we obtain that p(τ) and OM(τ) satisfy the following condition:

OM(τ) =
p(τ) − p(t)

λℓp(τ)
+

p(t)

λℓ
log

(

(1− p(t))p(τ)

p(t)(1− p(τ))

)

.

It is readily verified that OM(τ) increases in p(τ). Staying unmatched over [t, t+ dt) and then
reverting to µ∗

ht+dt
only makes p(τ), and thus OM(τ), lower than their respective values on

path for any τ > t. So the worker does not strictly prefer to stay unmatched for [t, t+ dt) and
then revert to µ∗

ht+dt
.

(b) We next consider breakthrough learning. Pick any τ > t. Let Q̃(τ) denote the probability that
this worker generates a breakthrough in [t, τ), p(τ) the worker’s expected productivity at time
τ conditional on no breakthrough over [t, τ), and ˜OM (τ) the expected amount of time that the
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worker is employed over [t, τ) conditional on no breakthrough. Then, by similar calculations
to those in part (a), we obtain that p(τ) and ˜OM(τ) satisfy the following condition:

˜OM(τ) =
p(t)− p(τ)

λh(1 − p(τ))
+

p(t)− 1

λh
log

(

(1− p(t))p(τ)

p(t)(1− p(τ))

)

.

By Bayes rule,

Q̃(τ) + (1− Q̃(τ))p(τ) = p(t) ⇒ Q̃(τ) =
p(t)− p(τ)

1− p(τ)
.

It is readily verified that both ˜OM(τ) and Q̃(τ) decrease in p(τ). The lower p(τ) is, the longer
the worker has been employed for over [t, τ) conditional on no breakthrough, and the higher
the probability that this worker has generated a breakthrough over [t, τ). Staying unmatched
over [t, t+ dt) and then reverting to µ∗

ht+dt
only makes p(τ) higher than its value on path, so it

makes both ˜OM(τ) and Q̃(τ) lower than their values on path. This is true for every τ > t, so
the worker does not strictly prefer to stay unmatched for [t, t+ dt) and then revert to µ∗

ht+dt
.

(iii) Suppose otherwise that worker k and employer j are not matched to each other under µ∗
ht

but both
strictly prefer to be matched over [t, t + dt) and then revert to µ∗

ht+dt
. Under µ∗

ht
, any employer’s

flow payoff is at least max{p∗(Ght), ps}v−w. If employer j finds it strictly preferable to match with
k and then revert to µ∗

ht+dt
, it must be that pk > max{p∗(Ght), ps}. This means that worker k was

already matched under µ∗
ht

, so he must not strictly prefer to be matched with j since the wage is
fixed.

�

Next, we use Lemma C.1 to fully characterize the dynamics of task allocation under each pure learning
environment given the evolution of the expected-productivity distribution.

C.1.3 Breakthrough learning

Once a worker generates a breakthrough, he is employed for the rest of time. To track how many workers
have “secured their jobs”, we let m(t) ∈ [0, 1] denote the mass of workers who have generated a breakthrough
by t, so (1−m(t)) is the mass of employers who are still learning about the type of their current match.

At t = 0, all employers are matched to a-workers due to α > 1 and pa > pb. Within the next instant,
the belief for those matched a-workers who have not generated a breakthrough drops slightly below pa.
Their employers find it optimal to switch to previously unmatched a-workers, the belief for whom is pa.
This is essentially equivalent to all a-workers being matched and allocated 1/α < 1 of a task at t = 0.

In the next instant, those a-workers who have generated a breakthrough stay matched forever and are
allocated one full task thereafter. Those who have not are once again allocated a fraction of a task. This
process goes on until the belief for those a-workers without a breakthrough drops to pb. We let Tb denote
this time, which is deterministic. From Tb onward, employers start allocating tasks to b-workers as well.
This Tb is the delay that is experienced by group b uniformly.

We let q(t) denote the belief for a matched worker who has not generated a breakthrough until time
t. For any t ∈ [0, Tb), a mass (α−m(t)) of a-workers have not generated a breakthrough. Each has a

high type with probability q(t), and is allocated 1−m(t)
α−m(t) ∈ (0, 1) of a task. Therefore, the evolution of m(t)

follows:

dm(t) = (α−m(t))q(t)λh
1−m(t)

α−m(t)
dt = q(t)λh(1−m(t))dt and m(0) = 0. (7)

By the law of large numbers, for any t ∈ [0, Tb), q(t) satisfies:

q(t)(α−m(t)) +m(t) = paα =⇒ q(t) =
αpa −m(t)

α−m(t)
. (8)
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The value Tb is given by q(Tb) = pb.
Starting from Tb, employers who did not have a breakthrough over [0, Tb) start allocating tasks over a

larger set of workers: a-workers who have not generated a breakthrough until time Tb and all b-workers.
The method for solving for m(t) and q(t) is similar. The evolution of m(t) is the same as (7). By the law
of large numbers, for any t > Tb, q(t) satisfies:

q(t)(α + β −m(t)) +m(t) = paα+ pbβ =⇒ q(t) =
αpa + βpb −m(t)

α+ β −m(t)
.

The process ends when either m(t) reaches 1 or q(t) reaches ps, depending on which event occurs earlier.
If m(t) reaches 1 first, then all employers are matched with workers who have generated a breakthrough.
Otherwise, if q(t) drops to ps first, some employers take safe arms.

Proof of Proposition 3.1. We first show that as pb ↑ pa, Tb → 0. By the definition of Tb and the expression
for q(t) in (8), we have that

m(Tb) =
α(pa − pb)

1− pb
.

Therefore, as pb ↑ pa, m(Tb) → 0. Using the fact that (i) m(0) = 0, (ii) m(t) is independent of pb for
t < Tb, and (iii) m(t) is strictly increasing in t, we conclude that Tb → 0.

Conditional on reaching Tb without a breakthrough, an a-worker has the same continuation payoff as
a b-worker does. As Tb → 0, the probability of a breakthrough over [0, Tb) goes to zero and so does the
flow payoff from being allocated the task over [0, Tb). Hence, the payoff of an a-worker approaches that of
a b-worker as Tb → 0. �

C.1.4 Breakdown learning

Under breakdown learning, a matched worker stays matched as long as no breakdown occurs. At t = 0, a
unit mass of a-workers are matched with employers. When a matched worker generates a breakdown, his
employer replaces him with an a-worker who has never been matched before. This process goes on until all
the a-workers are tried. From that instant onward, an employer who just experienced a breakdown hires a
b-worker who has never been tried before. We let Tb denote the first time that a b-worker is hired. Like in
the case of breakthrough learning, this Tb is again the delay that is experienced by group b uniformly.

We let m(t) > 1 be the mass of workers who have been tried before t. Among these workers, one unit
are currently employed, and a mass (m(t) − 1) of workers have generated a breakdown before t. For any
t ∈ [0, Tb), the mass of employers who are matched to high-type workers are pam(t), so 1 − pam(t) are
matched to low-type workers. Hence, the evolution of m(t) follows:

dm(t) = (1− pam(t))λℓdt.

This along with the boundary condition m(0) = 1 pins down m(t) for any t ∈ [0, Tb):

m(t) =
1− (1− pa)e

−λℓpat

pa
.

If paα < 1, then Tb is finite and solves m(Tb) = α. Otherwise Tb is infinity.
Suppose that paα < 1. For any t > Tb, the mass of employers who are matched to high-type workers

are paα+ pb(m(t)− α). Hence, the evolution of m(t) follows:

dm(t) = (1− paα− pb(m(t)− α))λℓdt.

This along with the boundary condition m(Tb) = α pins down m(t) for any t > Tb:

m(t) =
1− (1− αpa)e

λℓpb(Tb−t) − α(pa − pb)

pb
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We let Ts denote the time at which this process of hiring untried b-workers ends. If paα + pbβ < 1, there
are fewer high-type workers than employers. Therefore, the process of hiring untried b-workers ends when
m(t) reaches α + β. If paα + pbβ > 1, there are weakly more high-type workers than employers, in which
case the process of hiring untried b-workers never ends (so Ts = ∞). This is because learning becomes
extremely slow when the mass of employers matched with low-type workers approaches zero.

Proof of Proposition 3.2. Suppose first that αpa > 1. A b-worker’s payoff is zero, so the ratio is zero as
well. The statement holds trivially. Next, let 1 < α < 1/pa. This assumption guarantees that 0 < Tb < ∞.
Let V (pi) denote an i-worker’s continuation payoff from the time he is first allocated the task. From the
proof of Proposition 2.2, we know that V (pi) = pi + (1 − pi)r/(λℓ + r). An a-worker’s expected payoff is

1

α

(

V (pa) +

∫ Tb

0

e−rtV (pa) dm(t)

)

.

A b-worker’s expected payoff is
1

β

∫ Ts

Tb

e−rtV (pb) dm(t).

As pb ↑ pa, V (pb) ↑ V (pa). But because each b-worker gets a chance strictly later than any a-worker, a
b-worker’s expected payoff is strictly lower than that of an a-worker. �

Spiraling arises if and only if b-workers are not guaranteed to be allocated the task at time t = 0. That
is, tasks must be relatively scarce. For simplicity, we assumed that α > 1 so that b-workers never get a
chance at t = 0. But even if some b-workers get a chance at t = 0, the expected payoffs of the two groups
do not converge as pb ↑ pa for as long as other b-workers are delayed. Proposition 3.3 shows that the larger
the labor force, i.e., the larger the mass of workers relative to the fixed unit mass of tasks, the greater the
inequality across groups.

Proof of Proposition 3.3. The rest of this argument supposes that pa(α + β) < 1. The argument for
pa(α+ β) > 1 is similar, and hence omitted.

Using the expression we have for m(t) and applying the change of variables µℓ = λℓ/r, we compute the
expected payoffs of workers from each group. The ratio of the expected payoff of an a-worker to that of a
b-worker is:

−

β(µℓpb + 1)

(

(µℓ + 1)
(

pa−1
αpa−1

)
1

µℓpa + µℓ(αpa − 1)

)

(

αpa−1
αpa+βpb−1

)
1

µℓpb

αµℓ(µℓpa + 1)

(

(αpa − 1)
(

αpa−1
αpa+βpb−1

)
1

µℓpb − αpa − βpb + 1

) .

We take the limit of this ratio as pb ↑ pa and differentiate with respect to α and β. By applying the change
of variables z = 1−pa

1−αpa
> 1 and y = 1−αpa

1−pa(α+β) > 1 to replace α and β and simplify the algebra, it follows

that these two derivatives are both positive. �

C.2 Proofs for section 3.3 (Large market with flexible wages)

C.2.1 Stable stage-game matchings

We first characterize the set of stable stage-game matchings for a given distribution G. Unlike fixed wages,
flexible wages lead to a situation where all employers earn identical profit.

Lemma C.2 (Equal profit across employers and linear wage for matched workers). Fix G. In any stable
stage-game matching,

1. all employers make the same profit. If some employers take safe arms, then this profit is s;

2. if worker k is matched, his wage takes the form of pkv + c1, where c1 is a constant.
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Proof. We first prove that employers make the same profit across all matched worker-employer pairs.
Suppose that workers k1 and k2 are matched to employers j1 and j2 at wages w1 and w2 respectively. Let
p1 and p2 be, respectively, the expected productivity of k1 and k2. Suppose that employer j1 makes a
strictly higher profit than j2:

vp1 − w1 > vp2 − w2.

Worker k1 and employer j2 can form a blocking pair at wage w1 + ε. Worker k1’s payoff improves by ε.
Employer j2’s profit improves to vp1 − w1 − ε > vp2 − w2. Hence, employers must make the same profit
across all matched pairs. This implies that the wage for a matched worker k must take the form of pkv+c1.

What remains to be shown is that if some employers take safe arms, then all employers make a profit of
s. If an employer makes more than s, he must be matched to a worker. Then an employer who is currently
taking a safe arm can form a blocking pair with this worker. �

Based on Lemma C.2, a stable stage-game matching (D,W ) is without loss characterized by (d(p), w(p)),
where d(p) specifies the fraction of workers with expected productivity p who are matched, and w(p) =
vp+ c1 is the wage if a worker with expected productivity p is matched.

Lemma C.3 below shows that employers are matched to the most productive workers, provided that
these workers are better than safe arms. This lemma is similar to Lemma C.1 for the case of fixed wages.
However, since wages are now flexible and can be pushed down to zero, the belief threshold at which the
employers start taking safe arms is s/v instead of ps = (s+ w)/v.

Lemma C.3 (Most productive workers are matched). Fix G and a stable stage-game matching (D,W ).
Let d(p) denote the fraction of workers with expected productivity p who are matched to an employer.

1. Suppose that p∗ > s/v. Then d(p) equals 1 if p > p∗, and 0 if p < p∗. If G is continuous at p∗, then
d(p∗) = 0. If G is discontinuous at p∗, then d(p∗) is given by:

(1−G(p∗)) (α+ β) + d(p∗)
(

G(p∗)−G(p∗−)
)

(α+ β) = 1.

2. Suppose that p∗ 6 s/v. Then d(p) equals 1 if p > s/v, and 0 if p < s/v. Moreover, d(s/v) can take
any value in [0, 1] subject to:

(

1−G
( s

v

))

(α+ β) + d
( s

v

)

(

G
( s

v

)

−G

(

s

v

−
))

(α+ β) 6 1.

Proof. First, an employer never matches with worker k if pk < s/v. Second, if a less productive worker
is matched, then a more productive worker must be matched as well. By way of contradiction, suppose
that for a given p1 < p2, a p1 worker is matched at wage w1 > 0 but a p2 worker is not. The employer
who is matched to the p1 worker can form a blocking pair with the p2 worker at wage w2 = ε > 0 since
p2v − ε > p1v − w1 and ε > 0.

We now argue that, if p∗ > s/v, no employer takes the safe arm. Suppose otherwise. Then there exists
an unmatched worker k with pk > p∗ > s/v. Then an employer who is taking the safe arm can form a
blocking pair with this worker k.

Lastly, if p∗ 6 s/v, then all workers whose p is strictly above s/v must be matched. Suppose otherwise
that some worker k is unmatched and pk > s/v. The mass of workers whose p is weakly above pk is strictly
smaller than 1. Hence, there exists an employer who is either matched to a worker k′ with pk′ < pk or
taking the safe arm. This employer can form a blocking pair with the unmatched worker k. �

Next, we fully characterize the wage function for matched workers. If p∗ > s/v, we must distinguish two
cases depending on whether there exists an unmatched worker whose productivity is arbitrarily close to p∗.
If such a worker exists, then the wage function is pinned down uniquely. Otherwise, there is a productivity
gap between the least-productive matched worker and the most-productive unmatched worker, so the
constant c1 in the wage function can take a range of values. If p∗ 6 s/v, there always exists a safe arm
for employers to take, so the wage function is pinned down uniquely. Whenever unique, the wage for a
matched worker k is (pk −max{p∗, s/v})v.
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Lemma C.4 (Wage in stable stage-game matchings). Fix G and a stable stage-game matching (D,W ).
Let d(p) denote the fraction of workers with expected productivity p who are matched to an employer.

1. Suppose that p∗ > s/v.

(1.a) If for any ε > 0,
∫ p∗

p∗−ε

(1− d(x)) dG(x) > 0,

then c1 = −vp∗ so w(pk) = (pk − p∗)v.

(1.b) Otherwise, let p∗∗ be the supremum belief among workers whose belief is strictly smaller than
p∗. Then the constant c1 in w(pk) = vpk + c1 can take any value in [−vp∗,−vmax{p∗∗, s/v}].

2. Suppose that p∗ 6 s/v. Then w(pk) = (pk − s/v)v.

Proof. We begin by showing that the wage function must be w(pk) = v(pk − p∗) in the case of (1.a).
The linearity of w(pk) follows from Lemma C.2. First, the wage w(p∗) cannot be lower than zero because
of limited liability. Second, if w(p∗) > 0, then the employer that is matched to a p∗ worker can form a
blocking pair with an unmatched worker whose pk is arbitrarily close to p∗.

Next we show (1.b). If there exists ε > 0 such that

∫ p∗

p∗−ε

(1 − d(x))dG(x) = 0,

then it must be that the fraction of workers whose belief is weakly above p∗ is exactly 1. We argue that
the constant c1 in w(pk) = vpk + c1 can be anything in:

c1 ∈ [−vp∗,−vmax{p∗∗, s/v}].

Pick any c1 in this range. All the employers get the same profit, which is at least vmax{p∗∗, s/v}. An
employer cannot form a blocking pair with another worker that is hired, since to attract that worker the
employer has to offer a higher wage than vpk + c1. This will lead to a lower profit for the employer. Also,
the employer cannot form a blocking pair with a worker that is not hired, since the most profit the employer
can make is vp∗∗, which is smaller than her current profit. Lastly, employers do not strictly prefer to take
safe arms because vmax{p∗∗, s/v} > s.

For the case of p∗ 6 s/v, the proof is similar to that for the case of (1.a), so is omitted. �

C.2.2 Dynamic stability

Lemmata C.2 to C.4 characterize the set of stable stage-game matchings. Multiplicity might arise in two
possible forms. First, for certain G’s, employers are indifferent between a positive mass of workers whose
productivity is s/v and the safe arms, as covered by part 2 of Lemma C.3. Second, for certain G’s, the
constant c1 in the wage function w(pk) = pkv + c1 can take a range of values, as covered by part (1.b)
of Lemma C.4. Whenever such G’s arise in the dynamic setting, we select a stable stage-game matching
that (i) leaves unmatched the workers whose productivity is s/v, and (iii) assigns the employer-preferred
constant c1 = −vp∗(G) in the wage function. This selection criterion is for ease of exposition only; the
propositions below hold even with a different selection because such multiplicity arises only at finitely many
instants of the entire time horizon.

Fix any history ht ∈ Ht. Let Ght denote the CDF of pk at history ht, and let µ∗
ht

be the stable
stage-game matching given Ght , as characterized by Lemmata C.2 to C.4 and selected according to the
previous paragraph. For any G, we let pM (G) := max{p∗(G), s/v} and call it the marginal productivity
given G. We proceed to demonstrate that µ∗ is dynamically stable.

Proposition C.2. In both the pure breakthrough environment and the pure breakdown one, µ∗ is dynam-
ically stable.

Proof. Pick any ht ∈ Ht. We want to show that conditions (i)-(iii) in Definition 2 are satisfied in each
learning environment.
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(i) If employer j is matched to a worker under µ∗
ht

, her flow payoff on path is at least s. The distribution
G(ht+dt), and hence j’s continuation payoff from t+dt on, does not depend on j’s deviation. Hence,
she does not strictly prefer to take a safe arm over [t, t+ dt) and then revert to µ∗

ht+dt
.

(ii) Suppose that worker k is matched at history ht according to µ∗. Let p(t) be this worker’s probability
of having a high type at history ht. We next show that he does not strictly prefer to stay unmatched
for [t, t+ dt) and then revert to µ∗

ht+dt
.

(a) We first consider breakdown learning. Pick any τ > t + dt. Let Q(τ) denote the probability
that this worker has generated a breakdown in [t, τ), and p(τ) denote the probability that this
worker has a high type at time τ conditional on no breakdown in [t, τ). By Bayes rule,

(1−Q(τ))p(τ) = p(t).

The worker’s expected flow-earnings at time τ are

(1−Q(τ))max
{

0,
(

p(τ) − pM (Ghτ )
)

v
}

= max

{

0, p(t)
p(τ)− pM (Ghτ )

p(τ)
v

}

(9)

which is weakly increasing in p(τ). Staying unmatched over [t, t + dt) and then reverting to
µ∗
ht+dt

only makes p(τ) lower than its value on path, so the worker will not reject the match.

(b) We next consider breakthrough learning. Pick any τ > t+ dt. Let Q̃(τ) denote the probability
that this worker has generated a breakthrough in [t, τ), and p(τ) denote the probability that
this worker has a high type at time τ conditional on no breakthrough in [t, τ). By Bayes rule,

Q̃(τ) + (1− Q̃(τ))p(τ) = p(t).

The worker’s expected flow-earnings at time τ are

Q̃(τ)(1 − pM (Ghτ ))v + (1− Q̃(τ))max
{

0, (p(τ)− pM (Ghτ ))v
}

= max
{

Q̃(τ)(1 − pM (Ghτ ))v, (p(t) − pM (Ghτ ))v
}

which is weakly increasing in Q̃(τ). Staying unmatched over [t, t + dt) and then reverting to
µ∗
ht+dt

only makes Q̃(τ) lower than its value on path, so the worker will not reject the match.

(iii) Suppose that worker k and employer j are not matched to each other under µ∗
ht

. We next show that
there is no wage w > 0 such that both k and j strictly prefer to be matched to each other at flow
wage w over [t, t+ dt) and then revert to µ∗

ht+dt
in either learning environment.

If k is matched to another employer under µ∗
ht

, w needs to be strictly higher than worker k’s current
wage. This implies that employer j’s flow payoff will be strictly lower than his current flow payoff.
Hence, j does not strictly prefer to pair with k over [t, t+ dt).

If k is unmatched, this means that pk 6 pM (Ght). But employer j’s flow payoff on path is at least
pM (Ght)v. So employer j will not find it strictly profitable to be matched to k.

�

Our next proposition shows that the contrast between breakthrough and breakdown environments in
terms of group inequality continues to hold. In particular, flexible wages do not close the earnings gap
between group a and b in the breakdown environment.

Proposition C.3. Given matching µ∗, as pb ↑ pa the average lifetime earnings of a-workers converge to
those of b-workers under breakthroughs but not under breakdowns.

Proof. Consider first the breakthrough environment. Let Tb be as defined in appendix C.1.3. Because
α > 1, for an initial period t ∈ [0, Tb), only a-workers are matched. If an a-worker has not achieved a
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breakthrough by Tb, his probability of having a high type is pb. In this case, he has the same continuation
payoff as a b-worker does. As pb ↑ pa, Tb → 0. Hence, an a-worker’s earnings advantage vanishes as well.

We now consider the breakdown environment. Equation (9) in the proof of Proposition C.2 established
that a worker who has been matched for longer has higher expected flow-earnings than a worker who has
been matched for a shorter period. Hence, at any t the expected flow-earnings of an a-worker are strictly
higher than those of a b-worker. Moreover, the uniform delay for group b, Tb, does not converge to zero as
pb ↑ pa, hence an a-worker’s earnings advantage due to [0, Tb) does not converge to zero either. Hence, the
average lifetime earnings of a-workers are strictly higher than those of b-workers. �

C.2.3 Wage, earnings, and employment gaps under breakdown learning

In this subsection we normalize v to 1 without loss of generality. We let Ea(τ) (resp., Eb(τ)) denote the
average flow-earnings of a-workers (resp., b-workers) at any time τ > 0. To simplify exposition, we assume
that (i) α > 1, (ii) αpa < 1, and (iii) αpa + βpb > 1. The first two conditions ensure that the uniform
delay for b-workers is positive but finite, i.e., 0 < Tb < ∞. The third condition ensures that the pool of
new workers is not exhausted before all employers are matched to high-type workers. That is, there are
more high-type workers than employers available. In the paragraph after the proof of Proposition C.4, we
discuss what happens when these conditions are not satisfied.

We first solve for the expected flow-earnings at time τ of an i-worker who is first matched at time
t 6 τ . From expression (9), this expected flow-earnings are given by

pi

(

1−
pM (Ghτ )

q(pi, τ − t)

)

,

where pi is the prior belief of an i-worker, pM (Ghτ ) is the marginal productivity at time τ , and q(pi, τ − t)
denotes the employer’s belief at time τ about an i-worker who is first matched at time t 6 τ and has not
generated a breakdown over [t, τ). The marginal productivity pM (Ghτ ) is given by:

pM (Ghτ ) =

{

pa if τ 6 Tb

pb otherwise,

where the delay for group b is Tb =
1

λℓpa
log
(

1−pa

1−αpa

)

. Moreover,

q(pi, τ − t) =
pi

pi + (1− pi)e−λℓ(τ−t)
.

In order to calculate the average flow-earnings of i-workers at any τ , we also need the density over the time
at which each i-worker is first matched. From appendix C.1.4, we have the expression for m(t), the mass
of workers who have been tried until time t:

m(t) =















1− (1− pa)e
−λℓpat

pa
if t 6 Tb

1− (1− αpa)e
λℓpb(Tb−t) − α(pa − pb)

pb
otherwise.

A unit mass of a-workers are matched at time 0. For any t ∈ (0, Tb), new a-workers are tried at rate m′(t).
For any t > Tb, new b-workers are tried at rate m′(t). Therefore, for any τ > 0, the average flow-earnings
of a-workers are

1

α

(

pa

(

1−
pM (Ghτ )

q(pa, τ)

)

+

∫ Tb∧τ

0

pa

(

1−
pM (Ghτ )

q(pa, τ − t)

)

m′(t) dt

)
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which simplifies to:

Ea(τ) :=



















(1 − pa)
(

1− e−λℓpaτ
)

α
if τ 6 Tb

pb(αpa − 1)
(

pa−1
αpa−1

)
1
pa

e−λℓτ

α
− papb + pa otherwise.

The calculation for the average flow-earnings of b-workers is similar. For any τ < Tb, no b-worker is tried,
so the average flow-earnings of b-workers are 0. For τ > Tb, the average flow-earnings are:

1

β

∫ τ

Tb

pb

(

1−
pM (Ghτ )

q(pb, τ − t)

)

m′(t) dt.

Hence,

Eb(τ) :=















0 if τ 6 Tb

(αpa − 1)

(

(

pa−1
αpa−1

)

pb
pa

e−λℓpbτ − pb

(

pa−1
αpa−1

)
1
pa

e−λℓτ + pb − 1

)

β
otherwise.

At the start of the horizon, there exists a gap in the average flow-earnings between groups because
Ea(τ) > 0 = Eb(τ) for any τ ∈ (0, Tb]. Moreover, this gap persists over the entire horizon and it does not
disappear even in the long run, as the following proposition shows. This is because even as τ → ∞, there
exist a non-zero mass of b-workers who never get tried.

Proposition C.4 (Persistent gap in average flow-earnings under breakdowns). Suppose that α > 1 > paα
and pa(α + β) > 1. In the limit pb ↑ pa, there exists T̃ ∈ (Tb,∞) such that the gap in average flow-
earnings, Ea(τ) − Eb(τ), is strictly increasing for τ < T̃ and strictly decreasing for τ > T̃ . The limit
limτ→∞ (Ea(τ)− Eb(τ)) is strictly positive.

Proof. The assumption that α > 1 > paα ensures that Tb ∈ (0,∞). For any τ ∈ [0, Tb), the gap Ea(τ) −
Eb(τ) is simply Ea(τ), which is strictly increasing in τ .

For any τ ∈ [Tb,∞), the gap Ea(τ) − Eb(τ) is increasing in τ if and only if

(α+ β)
(

1−pa

1−αpa

)
1
pa

−1

e−λℓ(1−pa)τ

α
> 1.

The LHS is decreasing in τ , so this inequality holds when τ is small enough. Since the LHS equals zero
when τ → ∞ and the inequality holds when τ = Tb, the gap in average flow-earnings is first strictly
increasing and then strictly decreasing. In the limit of τ → ∞, the gap in average flow-earnings is strictly
positive:

lim
τ→∞

(Ea(τ)− Eb(τ)) =
(1− pa)(αpa + βpa − 1)

β
> 0.

�

If α < 1, then Tb = 0. If αpa > 1, then Tb = ∞. The results for both cases are similar to those in
Proposition C.4, so we omit them. If paα + pbβ 6 1 instead, all b-workers will obtain a chance in the
long run. Even though for each τ > 0 there exists a non-zero gap in average flow-earnings, as t → ∞ the
average flow-earnings of the two groups converge.

We next characterize the average wage of a-workers and that of b-workers at each τ . Let Wa(τ) and
Wb(τ) be the average wage for the two groups. Let Q(pi, τ − t) be the probability that no breakdown has
occurred up to time τ if the i-worker is first matched at time t:

Q(pi, τ − t) = (1− pi)e
−λℓ(τ−t) + pi.
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The average wage of a-workers at time τ is:

∫ Tb∧τ

0

(

q(pa, τ − t)− pM (Ghτ )
)

m′(t)Q(pa, τ − t)dt+
(

q(pa, τ)− pM (Ghτ )
)

Q(pa, τ)
∫ Tb∧τ

0 m′(t)Q(pa, τ − t)dt+Q(pa, τ)
,

which simplifies to:

Wa(τ) =















(pa − 1)e−λℓpaτ − pa + 1 if τ 6 Tb

αpae
λℓτ

αpaeλℓτ + (1− αpa)
(

pa−1
αpa−1

)
1
pa

− pb otherwise.

The average wage of b-workers at time τ > Tb is:

∫ τ

Tb

(

q(pb, τ − t)− pM (Ghτ )
)

m′(t)Q(pb, τ − t)dt
∫ τ

Tb
m′(t)Q(pb, τ − t)dt

,

which simplifies to

Wb(τ) =























0 if τ 6 Tb
(

pa−1
αpa−1

)

pb
pa

e−λℓpbτ − pb

(

pa−1
αpa−1

)
1
pa

e−λℓτ + pb − 1

(

pa−1
αpa−1

)
1
pa

e−λℓτ − 1

otherwise.

Proposition C.5 (Persistent wage gap under breakdowns). Suppose that α > 1 > paα and pa(α+β) > 1.
In the limit pb ↑ pa, there exists T̂ ∈ [Tb,∞) such that the wage gap Wa(τ) −Wb(τ) is strictly increasing
for τ < T̂ , and strictly decreasing for τ > T̂ .

Proof. For any τ ∈ [0, Tb), the wage gap Wa(τ)−Wb(τ) is simply Wa(τ), which is strictly increasing in τ .

For any τ ∈ [Tb,∞), we apply the change of variables x = pa−1
αpa−1 , y =

(

pa−1
αpa−1

)− 1
pa

eλℓτ . We can

rewrite the wage gap as

y
(

y−pa − x
y(pa+x−1)−pa+1

)

y − 1
, (10)

where x > 1 since 0 < pa < αpa < 1 and y > 1 since τ > Tb. Note also that y is monotone increasing in τ .
This wage gap (10) is increasing in y if and only if

H(y) := xypa
(

y2(pa + x− 1)− pa + 1
)

+ (−(y − 1)pa − 1)(y(pa + x− 1)− pa + 1)2 > 0.

We next argue that H(y) is positive if and only if y is small enough.
First, it is readily verified that H(1) = H ′(1) = 0, H(∞) < 0, and H(4)(y) < 0. This shows that H

′′

(y)
is concave. It is also readily verified that H

′′

(∞) < 0. There are three cases to consider regarding the
shape of H ′′(y), with the third case being impossible:

(1) If H
′′

(1) > 0, then as y increases, H
′′

(y) is first positive and then negative.

(2) If H
′′

(1) 6 0 and H
′′′

(1) 6 0, then H
′′

(y) is negative for all y > 1.

(3) The last case is H
′′

(1) 6 0 but H
′′′

(1) > 0. We show that this is not possible since it requires that

2(pa + x) < pax
2 + 2,

pa(x + 6)x+ 4(x− 3)x+ 6 < 6pa,

which cannot hold simultaneously given that x > 1 and pa ∈ (0, 1).
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If case (1) holds, then H(y) is first convex then concave. This, together with H(1) = H ′(1) = 0 and
H(∞) < 0, shows that H(y) is first positive and then negative. If case (2) holds, then H(y) is concave for
all y > 1. This, together with H(1) = H ′(1) = 0, shows that H(y) is negative for y > 1. �

Finally, we also characterize the employment gap between groups. Let Pa(τ) (resp., Pb(τ)) denote
the fraction of a-workers (resp., b-workers) that are allocated a task at time τ . We refer to Pi(τ) as the
employment rate for group i. The following proposition shows that at any time τ , a-workers have a strictly
higher chance of being employed than b-workers. Moreover, the gap Pa(τ)− Pb(τ) does not vanish to zero
even as τ → ∞.

Proposition C.6 (Persistent employment gap under breakdowns). Suppose that α > 1 > paα and pa(α+
β) > 1. In the limit as pb ↑ pa, Pa(τ) − Pb(τ) is weakly decreasing in τ and

lim
τ→∞

(Pa(τ) − Pb(τ)) =
pa(α+ β)− 1

β
> 0.

Proof. The employment rate Pi(τ) equals Ei(τ)
Wi(τ)

. From the equations for Ei(τ) and Wi(τ), we calculate

Pi(τ) as pb ↑ pa:

Pa(τ) =











1
α if τ 6 Tb

pa +
1

α

(

e−λℓτ (1 − αpa)

(

1− pa
1− αpa

)1/pa
)

otherwise,

Pb(τ) =











0 if τ 6 Tb

1

β
(1− αpa)

(

1− e−λℓτ

(

1− pa
1− αpa

)1/pa
)

otherwise.

The employment gap Pa(τ) − Pb(τ) is given by

Pa(τ) − Pb(τ) =

{

1
α if τ 6 Tb

pa +
(

1
α + 1

β

)

(1− αpa)e
−λℓ(τ−Tb) − 1

β (1 − αpa) otherwise.

It can be readily observed that (i) for τ 6 Tb, Pa(τ) − Pb(τ) is constant in τ , (ii) for τ > Tb, it strictly

decreases in τ , and (iii) as τ → ∞, Pa(τ)−Pb(τ) →
pa(α+β)−1

β . Because pa(α+β) > 1, this limit is strictly
greater than 0. �

C.2.4 Relaxing limited liability

We have shown that a-workers and b-workers fare quite differently under breakdown learning even if
wages are flexible. One might conjecture that this result relies on the assumption that wages have to be
nonnegative (that is, the minimum wage must equal the payoff from remaining unemployed): if b-workers
could offer negative wages, they would do so and “steal” employment opportunities away from a-workers. In
this section, we show that relaxing the limited liability assumption does not guarantee that b-workers have
similar employment opportunities as a-workers do, because a-workers will also lower their wages and outbid
b-workers. As a result, relaxing the limited liability assumption intensifies competition among workers and
thus only benefits the employers.

In this section, we assume that there exists a fixed bound LB > 0 such that wages have to be at least
−LB. We will focus on breakdown learning and show that the disparity between the two groups persists
when LB is small enough. (For larger LB, we conjecture that b-workers compete all of their surplus away
and have a zero expected lifetime payoff.)

We assume that α > 1 and αpa < 1, so according to the dynamic matching µ∗ in Proposition C.2
there exists a time 0 < Tb < ∞ such that b-workers are hired starting from Tb. The marginal productivity
pM (Ght) is pa for t 6 Tb. We also assume that αpa + βpb > 1, so there are more high-type workers than
tasks. Due to this assumption, the marginal productivity pM (Ght) is pb for t ∈ (Tb,∞).
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We revise the dynamic matching µ∗ in Proposition C.2 by lowering the wage for a matched worker k at
time t from (pk − pM (Ght))v to (pk − pM (Ght))v −LB. Hence, at any time t, the marginal worker’s wage
is −LB < 0. This revised wage function captures the idea that workers benefit from the opportunities to
be learnt, so they compete against each other by lowering the wage until the marginal worker’s wage drops
to the bound −LB. This is the only change we made to µ∗. In particular, at any time t, all employers
originally had the same flow profit by Lemma C.2. Their flow profit now increases by LB, so all employers
continue to have the same flow profit.

We let µ∗(LB) denote this revised dynamic matching. We next show that if LB is small enough,
µ∗(LB) is dynamically stable.

Proposition C.7. Assume that α > 1, αpa < 1, and αpa + βpb > 1. Under breakdown learning, µ∗(LB)
is dynamically stable for any

LB <
v(λℓ((2 − pb)pb − pa) + r(pb − pa))

λℓpb + r
.

In the limit of pa ↓ pb, this condition reduces to:

LB <
λℓ(1 − pb)pbv

λℓpb + r
,

which is equivalent to the condition that a b-worker’s continuation payoff at time 0 is strictly positive.

Proof. Pick any ht ∈ Ht. We want to show that conditions (i)-(iii) in Definition 2 are satisfied.

(i) If employer j is matched to a worker under µ∗(LB)ht , her flow payoff on path is at least s. The
distribution G(ht+dt), and hence j’s continuation payoff from t + dt on, does not depend on j’s
deviation. Hence, she does not strictly prefer to take a safe arm over [t, t + dt) and then revert to
µ∗(LB)ht+dt

.

(ii) Suppose that worker k is matched at history ht according to µ∗(LB). Let p(t) be this worker’s
expected productivity at history ht. We next show that he does not strictly prefer to stay unmatched
for [t, t+ dt) and then revert to µ∗(LB)ht+dt

.

Pick any τ > t. Let Q(τ) denote the probability that this worker has generated a breakdown in
[t, τ), and p(τ) denote the worker’s expected productivity at time τ conditional on no breakdown in
[t, τ). By Bayes rule,

(1−Q(τ))p(τ) = p(t).

The worker’s expected flow-earnings at time τ are

(1−Q(τ))
((

p(τ) − pM (Ghτ )
)

v − LB
)

= p(t)

(

p(τ)− pM (Ghτ )
)

v − LB

p(τ)
(11)

which is strictly increasing in p(τ). Staying unmatched over [t, t + dt) and then reverting to
µ∗(LB)ht+dt

only makes p(τ) lower than its value on path. Hence, the worker’s expected flow-
earnings at time τ > t+ dt is higher on path than if he is unmatched over [t, t+ dt). However, the
worker’s flow-earnings over [t, t+ dt) can be negative if he is matched, so they can be lower than his
flow-earnings if he is unmatched.

For any τ > t+ dt, we now compare the worker’s expected flow-earnings at time τ on and off path.
Let pon(τ) and poff(τ) be, respectively, the probabilities of a high type conditional on no breakdown
on path and and off path. Then we have:

pon(τ) =
p(t)

p(t) + (1 − p(t))e−λℓ(τ−t)

poff(τ) =
p(t)

p(t) + (1 − p(t))e−λℓ(τ−t−dt)
.
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Substituting pon(τ) and poff(τ) into (11), we obtain the difference between on-path flow-earnings and
off-path flow-earnings at time τ :

p(t)

(

pon(τ) − pM (Ghτ )
)

v − LB

pon(τ)
− p(t)

(

poff(τ) − pM (Ghτ )
)

v − LB

poff(τ)
=

(

eλℓdt − 1
)

(1− p(t))e−λℓ(τ−t)(LB + pM (Ghτ )v) >
(

eλℓdt − 1
)

(1− p(t))e−λℓ(τ−t)(LB + pbv), (12)

where the inequality follows from the fact that this payoff difference increases in pM (Ghτ ) and that
pM (Ghτ ) > pb. We now integrate the right-hand side of (12) and obtain that the difference between
on-path and off-path continuation payoffs at time t+ dt is at least:

∫ ∞

t+dt

e−r(τ−t)
(

eλℓdt − 1
)

(1− p(t))e−λℓ(τ−t)(LB + pbv) dτ

=

(

eλℓdt − 1
)

e−(λℓ+r)dt(1− p(t))(LB + pbv)

λℓ + r
=

λℓ(1− p(t))(LB + pbv)

λℓ + r
dt+ o(dt). (13)

The worker’s total discounted earnings in [t, t+ dt) if he stays on path and being matched are:

∫ t+dt

t

e−r(τ−t)p(t)

(

pon(τ) − pM (Ghτ )
)

v − LB

pon(τ)
dτ >

∫ t+dt

t

e−r(τ−t)p(t)
(pon(τ) − pa) v − LB

pon(τ)
dτ

=
(p(t)− 1)

(

1− e−(λℓ+r)dt
)

(LB + pav)

λℓ + r
−

(

1− e−rdt
)

p(t)(LB − (1− pa)v)

r

= ((p(t)− pa)v − LB)dt+ o(dt), (14)

where the inequality follows from the fact that (11) decreases in pM (Ghτ ) and that pM (Ghτ ) 6 pa.
If the worker deviates and stays unmatched, his total discounted earnings in [t, t+ dt) are zero.

The worker prefers to be matched than being unmatched over [t, t+ dt) if the sum of (13) and (14)
is positive. For small dt, this is satisfied if

LB <
v(p(t)(λℓ(1− pb) + r) + λℓ(pb − pa)− par)

λℓp(t) + r
. (15)

The right-hand side increases in p(t), which is the worker’s expected productivity at t conditional
on no breakdown being realized. Since p(t) is at least pb, the right-hand side is the smallest when
p(t) equals pb. Hence, the condition (15) is satisfied if

LB <
v(λℓ((2 − pb)pb − pa) + r(pb − pa))

λℓpb + r
.

In the limit of pa ↓ pb, this condition reduces to:

LB <
λℓ(1− pb)pbv

λℓpb + r
. (16)

(iii) Suppose that worker k and employer j are not matched to each other under µ∗(LB)ht . We next
show that there is no wage w > −LB such that both k and j strictly prefer to be matched to each
other at flow wage w over [t, t+ dt) and then revert to µ∗(LB)ht+dt

.

If k is matched to another employer under µ∗(LB)ht , w needs to be strictly higher than worker k’s
current wage. This implies that employer j’s flow payoff will be strictly lower than his current flow
payoff. Hence, j does not strictly prefer to pair with k over [t, t+ dt).

If k is not matched, this means that pk 6 pM (Ght). On the other hand, worker k’s wage is at least
−LB, so employer j’s flow payoff from being matched to worker i is at most pkv+LB. But employer
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j’s flow payoff on path is at least pM (Ght)v + LB. So employer j will not find it strictly profitable
to be matched to i.

Lastly, we calculate a b-worker’s lifetime earnings. Suppose that this worker starts being hired at t > Tb.
His expected productivity at time τ > t conditional on no breakdown is p(τ):

p(τ) =
p(t)

p(t) + (1− p(t))e−λℓ(τ−t)
=

pb
pb + (1− pb)e−λℓ(τ−t)

.

Substituting this p(τ), p(t) = pb, and pM (Ghτ ) = pb into the worker’s expected flow-earnings (11) at time
τ and integrating the flow-earnings over all τ > t, we obtain the worker’s expected lifetime earnings:

e−rt

∫ ∞

t

e−r(τ−t)pb
(p(τ)− pb) v − LB

p(τ)
dt = e−rtλℓpb((1 − pb)v − LB)− LBr

r(λℓ + r)
,

which is strictly positive if and only if (16) holds. �

D Proofs and additional results for section 4

D.1 Auxiliary discussion for section 4.2

Proof of Lemma 4.1. We first show the inequality for the breakdown environment. Suppose qa > qb, and
let µℓ := λℓ/r. The expected payoff of each type of each worker is given by

Ua(θa; qa, qb) =







1 if θa = h
1

µℓ + 1
if θa = ℓ,

Ub(θb; qa, qb) =















µℓ(1− qa)

µℓ + 1
if θb = h

µℓ(1− qa)

(µℓ + 1)2
if θb = ℓ.

The benefit of investment is given by Bi(qa, qb) = π (Ui(h; qa, qb)− Ui(ℓ; qa, qb)). Therefore, given qa > qb,
the benefit of investment is:

Ba(qa, qb) = π
µℓ

µℓ + 1
> Bb(qa, qb) = π

(

µℓ

1 + µℓ

)2

(1− qa).

Hence, the benefit to the worker who is favored post-investment is strictly higher. Again, the benefit of
investment for worker i is:

Bi(qa, qb) =











π
µℓ

µℓ + 1
if qi > q−i

π

(

µℓ

1 + µℓ

)2

(1 − q−i) if qi < q−i.

Hence, the benefit of investment for worker i is discontinuous at qi = q−i. We now show the inequality for
the breakthrough environment. Let qa > qb. The employer uses worker a exclusively for a period of length

t∗ = 1
λh

log
(

qa(1−qb)
(1−qa)qb

)

and then splits the task equally among the two workers for a subsequent period

of length ts := 2
λh

log
(

qb(1−p)

(1−qb)p

)

. Let S(h, qb) and S(ℓ, qb) denote the payoffs to a high-type worker and a

low-type worker, respectively, if (i) his competitor has a high type with probability qb; (ii) the employer
holds the same belief about both workers and hence splits the task equally between the two workers until
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the belief for both workers drops to p. The post-investment payoff for each type of each worker is:

Ua(h; qa, qb) = 1− e−rt∗ + e−rt∗
(

1− e−λht
∗

+ e−λht
∗

S(h, qb)
)

,

Ua(ℓ; qa, qb) = 1− e−rt∗ + e−rt∗S(ℓ, qb),

Ub(h; qa, qb) = e−rt∗
(

1− qa + qae
−λht

∗

)

S(h, qb),

Ub(ℓ; qa, qb) = e−rt∗
(

1− qa + qae
−λht

∗

)

S(ℓ, qb).

Note that Ua(h; qa, qb)− Ua(ℓ; qa, qb) > e−rt∗(S(h, qb)− S(ℓ, qb)) whereas Ub(h; qa, qb)− Ub(ℓ; qa, qb) <
e−rt∗(S(h, qb)− S(ℓ, qb)). Hence, Ba(qa, qb) > Bb(qa, qb).

To characterize S(h, qb) and S(ℓ, qb), let t1 be the arrival time of a breakthrough for a high-type worker
and let t2 be the arrival time of his competitor’s breakthrough when the task is split equally between
workers. For a low type, a breakthrough never arrives. In the absence of any breakthroughs, the employer
experiments with the workers until the belief hits p. The length of this experimentation period is given by
ts as defined above. The CDFs of t1 and t2 for t1, t2 6 ts are:

F1(t1) = 1− e−
λht1

2 , F2(t2) = qb(1 − e−
λht2

2 ),

with corresponding density functions f1 and f2 respectively. Therefore,

S(ℓ, qb) =

∫ ts

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(ts))

1− e−rts

2
,

S(h, qb) =

∫ ts

0

f1(t1)

(∫ t1

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(t1))

(

1− e−rt1

2
+ e−rt1

))

dt1

+ (1− F1(ts))

(∫ ts

0

f2(t2)
1− e−rt2

2
dt2 + (1 − F2(ts))

1 − e−rts

2

)

.

This allows us to obtain explicit expressions for Ba and Bb. Letting µh := λh/r, we have

Ba(qa, qb) = π

(

qb(p− 1)

(qb − 1)p

)−2/µh (

(qb − 1)qa
qb(qa − 1)

)−1/µh

(1 − p)2
(

qb(1−p)

(1−qb)p

)
2

µh (qb(µhqb + 2)− (µh + 2)qa)− (1− qb)
2(p(µh(p− 2)− 2) + (µh + 2)qa)

2(µh + 2)(qb − 1)(1− p)2qa

if qa > qb, and

Ba(qa, qb) = π

(

qa(p− 1)

(qa − 1)p

)−2/µh ( (qa − 1)qb
qa(qb − 1)

)−1/µh

(1 − p)2
(

qa(1−p)

(1−qa)p

)2/µh

µhqa(qb − 1)− (qa − 1)(qb − 1)
(

p(µh(p− 2)− 2) + (µh + 2)qa
)

2(µh + 2)(qa − 1)(1− p)2qa

if qa 6 qb. It is immediate that Ba is continuously differentiable at any (qa, qb) such that qa 6= qb. Moreover,

lim
qa→q+b

Ba(qa, qb) = lim
qa→q−b

Ba(qa, qb)

lim
qa→q+b

∂Ba(qa, qb)

∂qa
= lim

qa→q−b

∂Ba(qa, qb)

∂qa
, lim

qa→q+b

∂Ba(qa, qb)

∂qb
= lim

qa→q−b

∂Ba(qa, qb)

∂qb
.
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Hence, Ba is continuously differentiable at qa = qb as well.30

�

Proof of Proposition 4.1. A post-investment belief pair (qa, qb) and a cost-threshold pair (ca, cb) constitute
an equilibrium if and only if ∀i ∈ {a, b}:

Bi(qa, qb) = ci, and qi = pi + (1 − pi)F (ci)π.

From the second condition, we have ci = F−1
(

qi−pi

(1−pi)π

)

. Hence, a belief pair (qa, qb) constitutes an

equilibrium if and only if:














1

π
Ba (qa, qb)−

1

π
F−1

(

qa − pa
(1 − pa)π

)

= 0

1

π
Bb (qa, qb)−

1

π
F−1

(

qb − pb
(1− pb)π

)

= 0.
(17)

Let ga(pa, pb, qa, qb) and gb(pa, pb, qa, qb) denote respectively the LHS of each equation in (17). Both ga and
gb are continuously differentiable, because Ba, Bb and F are continuously differentiable and F ′ is strictly
positive.

Existence of symmetric equilibrium. We first show that if workers have the same prior belief,
there is a symmetric equilibrium in which they have the same post-investment belief. Let p̂ denote the two
workers’ prior belief and define

g(q, π) :=
1

π
Bi(q, q)−

1

π
F−1

(

q − p̂

(1− p̂)π

)

.

A symmetric equilibrium exists if there exists q̂ ∈ [p̂, p̂+ (1− p̂)π] such that g(q̂, π) = 0, or equivalently,

π



µh +

(

q̂(1−p)

(1−q̂)p

)

−
µh+2
µh ((µh+2)q̂+p(µh(p−2)−2))

(1−p)p





2(µh + 2)
= F−1

(

q̂ − p̂

π(1− p̂)

)

. (18)

Such a q̂ exists because for q̂ ∈ [p̂, p̂+(1− p̂)π]: (i) Bi(q̂, q̂) is continuous, strictly positive, and strictly less

than one; and (ii) F−1
(

q̂−p̂
(1−p̂)π

)

is strictly increasing, equals 0 if q̂ = p̂, and equals 1 if q̂ = p̂+ (1 − p̂)π.

Therefore, there exists q̂ ∈ (p̂, p̂ + (1 − p̂)π) such that F−1
(

q̂−p̂
(1−p̂)π

)

crosses Bi(q̂, q̂) from below. Hence,

ga(p̂, p̂, q̂, q̂) = gb(p̂, p̂, q̂, q̂) = 0.

Non-singularity of the Jacobian at (p̂, p̂, q̂, q̂). We next show that the Jacobian matrix evaluated
at (p̂, p̂, q̂, q̂) is invertible for a generic set of parameters, where the Jacobian is given by:

J =

(

∂ga
∂qa

∂ga
∂qb

∂gb
∂qa

∂gb
∂qb

)∣

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

.

Note that J is symmetric: ∂ga
∂qa

= ∂gb
∂qb

∣

∣

∣

(p̂,p̂,q̂,q̂)
and ∂ga

∂qb
= ∂gb

∂qa

∣

∣

∣

(p̂,p̂,q̂,q̂)
. Hence, we only need to show

30For detailed calculations, see the online supplement at http://yingniguo.com/wp-
content/uploads/2020/06/differentiability.pdf.
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that:

∂ga
∂qa

+
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

6= 0 (19)

∂ga
∂qa

−
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

6= 0. (20)

Claim (19) holds because
∂g(q, π)

∂q

∣

∣

∣

∣

q=q̂

< 0.

This inequality follows from the fact that 1
πF

−1

(

q − p̂

(1− p̂)π

)

generically crosses 1
πBi(q, q) transversally

from below at q = q̂, as shown in the following lemma.

Lemma D.1. There exists a set Π ⊂ (0, 1) of measure one such that g(q, π) intersects zero transversally
at each intersection point for any π ∈ Π.

Proof. First, g(q, π) is strictly increasing in π because the term 1
πBi(q, q) is independent of π and F−1

is strictly increasing in [0, 1]. Therefore 0 is a regular value of g(q, π). By the Transversality Theorem
(Kalman and Lin (1979)), there exists a set Π ∈ (0, 1) of values for π such that (0, 1) \Π has measure zero
and for any π ∈ Π, 0 is a regular value of g(q, π). Hence, generically the derivative of g(q, π) with respect
to q at any intersection point q = q̂ such that g(q̂, π) = 0 is non-zero. �

Claim (20) holds unless:

(

q̂(1−p)

(1−q̂)p

)

−2/µh((µh+2)q̂2+µh(2q̂−1)p2−2(µh+1)(2q̂−1)p)
(p−1)2 + 2q̂(µhq̂+1)

1−q̂

2(µh + 2)q̂2
=

1

π2(1− p̂)F ′

(

F−1
(

q̂−p̂
π(1−p̂)

)) . (21)

Fix (F, p, µh). The following lemma shows that for almost any (π, p̂) claim (20) holds.

Lemma D.2. Suppose that F is weakly convex. Then, claim (20) is satisfied in equilibrium for almost all
(π, p̂).

Proof. The system of equations (18) and (21) is equivalent to:

g1(p̂, q̂, π):=
1

π
F−1

(

q̂ − p̂

(1 − p̂)π

)

− h1(q̂) = 0

g2(p̂, q̂, π):=
1

π(1 − p̂)F ′ (πh3(q̂))
− h2(q̂) = 0,

where h1, h2, h3 are functions of q̂ only and h3 is defined from the equilibrium condition (17) as:

h3(q̂) :=
1

π
F−1

(

q̂ − p̂

(1− p̂)π

)

=
1

π
Ba(q̂, q̂).

Note that g1 is strictly decreasing in p̂ and π, whereas g2 is strictly increasing in p̂ but decreasing in π,
by the convexity of F . Therefore, the determinant of the Jacobian matrix of this system with respect to
(π, p̂) is strictly negative. So the Jacobian matrix is invertible. This implies that for almost all (π, p̂), the
function g = (g1, g2)(p̂, q̂, π) crosses (0, 0) transversally: there exists a set Π×P ⊂ (0, 1)× (p, 1) of measure
one such that for any (π, p̂) ∈ Π × P , the values of q that sustain a symmetric equilibrium satisfy claim
(20). �
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Implicit function theorem. We apply the implicit function theorem for any parameter values as-
sumed in the model except for the set of measure zero of parameters identified above. Therefore, by the
implicit function theorem, there exists a neighborhood B ⊂ [0, 1]2 of (p̂, p̂) and a unique continuously dif-
ferentiable map q : B → [0, 1]2 such that ga(p̂, p̂,q(p̂, p̂)) = 0, gb(p̂, p̂,q(p̂, p̂)) = 0 and for any (pa, pb) ∈ B

ga(pa, pb,q(pa, pb)) = gb(pa, pb,q(pa, pb)) = 0.

By the continuity of the map q, q(pa, pb) converges to q(p̂, p̂) = (q̂, q̂) as pa → p̂ and pb → p̂. Hence, the
workers’ post-investment probabilities of having a high type converge as well.

�

Proof of Proposition 4.2. Throughout the proof, a “worker’s type” refers to the worker’s pre-investment
type. We focus on the equilibrium with post-investment beliefs qa > qb and cost thresholds ca > cb as
pb ↑ pa. The argument for the equilibrium with qb > qa is similar.

We first characterize this equilibrium. Using Ba and Bb derived in the proof of Lemma 4.1, the cost
thresholds are:

ca = π
µℓ

µℓ + 1
> cb = π

µ2
ℓ(1− qa)

(µℓ + 1)2
.

where the post investment belief pair (qa, qb) is given by qa = pa+(1−pa)πF (ca) and qb = pb+(1−pb)πF (cb).
Note that ci ∈ (0, 1) for each i ∈ {a, b}. Given that ca > cb and pa > pb, the employer is indeed willing to
favor worker a.

Let κ := µℓ(1−qa)
µℓ+1 < 1. Since worker a is favored post-investment, a high-type worker a obtains payoff 1,

while a high-type worker b obtains payoff κ. Hence, the ratio of worker b’s to worker a’s payoff, conditional
on each being a high type, is exactly κ.

We next argue that for any realized cost c, a low-type worker b’s payoff is at most a fraction κ of the
low-type worker a’s payoff. Hence, the same holds when taking the expectation with respect to c.

1. If c > ca, neither low-type worker a nor low-type worker b invests. The ratio of low-type worker b’s
payoff to low-type worker a’s payoff is exactly κ.

2. If cb < c < ca, a low-type worker a is willing to invest but a low-type worker b is not. If the low-type
worker a deviates to no investment, the ratio of low-type worker b’s payoff to low-type worker a’s
payoff is κ. By investing worker a obtains a strictly higher payoff. Therefore, the payoff ratio must
be strictly lower when the low-type worker a invests.

3. If c 6 cb, both the low type of worker a and of worker b invest. Ignoring investment cost c > 0, the
payoff ratio of the low-type worker b to that of the low-type worker a is κ. Once the investment
cost is subtracted from both the numerator and the denominator, the payoff ratio becomes strictly
smaller.

�

Proposition D.1 (Investment polarization under breakdown learning). Fixing all else but λh and λℓ,
there exists λ̄ > 0 such that for any λh, λℓ > λ̄ and in any pair of equilibria, one from each environment,
the worker favored post-investment invests strictly more in the breakdown environment than in the break-
through one, whereas the worker discriminated against post-investment invests strictly less in breakdown
environment than in the breakthrough one.

Proof. Throughout the proof, we set π = 1 without loss, as π merely scales the benefit from investment
Bi(qa, qb) and the threshold for investment for each i. Let i denote the worker favored post-investment,
and −i be the worker discriminated against post-investment.

As we take λℓ, λh to infinity, worker i’s benefit from investment converges to 1 under breakdown
learning, while it converges to

B̄i(qi, q−i) :=
(1− q−i)

2qi + qi − q2−i

2qi(1− q−i)
,
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under breakthrough learning, where we use the fact that p → 0 as λh → ∞. The function B̄i(qi, q−i)
increases in qi, and decreases in q−i. Since qi is bounded above by pa+(1−pa)π and q−i is bounded below
by pb, B̄i(qi, q−i) is bounded from above by

B̄i(pa + (1− pa)π, pb) =
(pa + (1− pa)π)((pb − 2)pb + 2)− pb

2

2(pa + (1− pa)π)(1− pb)
< 1.

By continuity of worker i’s benefit from investment in λℓ, λh, when λℓ, λh are sufficiently large, the worker
favored post-investment invests more under breakdown learning than under breakthrough learning.

As we take λℓ, λh to infinity, worker −i’s benefit from investment converges to (1−qi) under breakdown
learning, while it converges to

B̄−i(qi, q−i) :=
(1− qi)(2− q−i)

(2− 2q−i)
> 1− qi,

under breakthrough learning. Here, the inequality follows from 0 < q−i < 1. Given that the favored worker
i invests more under breakdown than under breakthrough learning, qi is higher under breakdown learning
as well. Hence, the benefit from investment for the worker who is discriminated against is higher under
breakthrough learning than under breakdown learning when λh, λℓ are large enough. �

D.2 Proofs for section 4.3

Proof of Proposition 4.3. Let Ui(pa, pb) be worker i’s payoff given the belief pair (pa, pb). For any pa > pb,
the employer first uses worker a for a period of length t∗. If no signal occurs in [0, t∗), the employer’s belief
toward worker a drops to pb. Let f(s) for s ∈ [0, t∗) be the density of the random arrival time of the first
signal from worker a. We let pa(s) be the belief that θa = h if there is no signal up to time s, and let
j(pa(s)) be the belief that θa = h right after the first signal at time s. Worker a’s payoff is given by

∫ t∗

0

f(s)
(

1− e−rs + e−rsUa(j(pa(s)), pb)
)

ds

+

(

1−

∫ t∗

0

f(s)ds

)

(

1− e−rt∗ + e−rt∗Ua(pb, pb)
)

.

Worker b’s payoff is given by

∫ t∗

0

f(s)e−rsUb(j(pa(s)), pb)ds+

(

1−

∫ t∗

0

f(s)ds

)

e−rt∗Ub(pb, pb).

As pa ↓ pb, t
∗ converges to zero. Both workers’ payoffs converge to Ua(pb, pb) = Ub(pb, pb). �

Proof of Proposition 4.4. Let Ui(qa, qb) be worker i’s payoff given the belief pair (qa, qb). We let pa(s) be
the belief toward worker a if there is no signal up to time s, and let j(pa(s)) be the belief toward him right
after the first signal at time s.

Given that pa > pb, the employer begins with worker a, and uses worker a exclusively if no signal
occurs. We let f(s) = paλhe

−λhs +(1− pa)λℓe
−λℓs be the density of the arrival time s ∈ [0,∞) of the first

signal from worker a. We can write worker a’s payoff as follows:

∫ ∞

0

f(s)
(

1− e−rs + e−rsUa (j(pa(s)), pb)
)

ds.

We can write worker b’s payoff as follows:

∫ ∞

0

f(s)e−rsUb (j(pa(s)), pb) ds.
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The payoff difference between a and b is:

∫ ∞

0

f(s)
(

1− e−rs + e−rs (Ua (j(pa(s)), pb)− Ub (j(pa(s)), pb))
)

ds.

We claim that Ua(qa, qb)−Ub(qa, qb) > −1 for any qa, qb, since Ui(qa, qb) is in the range [0, 1] for any i, qa, qb.
Therefore, the payoff difference is at least:

∫ ∞

0

f(s)
(

1− 2e−rs
)

ds.

This term is greater than 0 if and only if r2 − (1 − 2pa)r(λℓ − λh)− λhλℓ > 0. �
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