Robust Monopoly Regulation

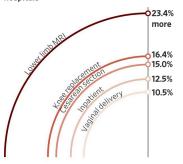
Yingni Guo, Eran Shmaya

Yale Theory Seminar April 2024

• Cooper et al. (2018): prices at monopoly hospitals are 12% higher than those in markets with four or five rivals

• Cooper et al. (2018): prices at monopoly hospitals are 12% higher than those in markets with four or five rivals

How much more people pay at monopoly hospitals vs. in markets with at least four hospitals



Source: Forthcoming paper by Zack Cooper, Stuart Craig, Martin Gaynor, and John Van Reenen in the Quarterly Journal of Economics

Source: wsj

- A regulator may want to constrain a monopolistic firm's price
- Price-constrained firm may fail to cover its fixed cost, ending up not producing
- Protect consumer well-being versus not distort production

- The challenge could be solved if the regulator had complete information
 - let the firm produce the efficient quantity and price at marginal cost
 - subsidize the firm for its other costs
- What shall the regulator do when he knows much less about the industry than the firm does?
- If he wants a policy that works "fairly well" in all circumstances, what shall this policy look like?

What we do

Regulator's payoff

consumer surplus
$$+ \alpha$$
 firm's profit, $\alpha \in [0, 1]$

- \bullet He can regulate firm's price and quantity, give a subsidy, charge a tax
- Given a demand and cost, regret to the regulator:

$$\mathbf{regret} = \mathsf{payoff} \; \mathsf{if} \; \mathsf{he} \; \mathsf{had} \; \mathsf{complete} \; \mathsf{information} \; - \; \mathsf{what} \; \mathsf{he} \; \mathsf{gets}$$

"money left on the table"

Optimal policy:

$$\alpha = 0$$

consumer surplus

(consumer well-being)

$$\alpha = 0$$

consumer surplus

(consumer well-being)

impose a price cap

 $\alpha = 0$

consumer surplus

(consumer well-being)

impose a price cap

gain from lower price loss from underproduction

 $\alpha = 0$

consumer surplus

(consumer well-being)

impose a price cap

gain from lower price loss from underproduction

 $\alpha = 1$

consumer surplus + firm's profit (efficiency)

 $\alpha = 0$

consumer surplus

(consumer well-being)

impose a price cap

gain from lower price loss from underproduction

 $\alpha = 1$

consumer surplus
+ firm's profit
(efficiency)

encourage production with piece-rate/capped subsidy

 $\alpha = 0$

consumer surplus

(consumer well-being)

impose a price cap

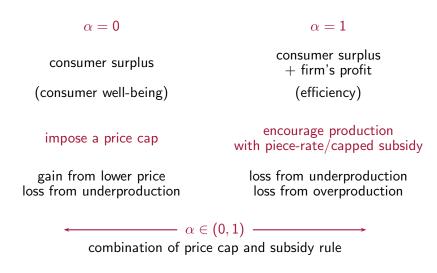
gain from lower price loss from underproduction

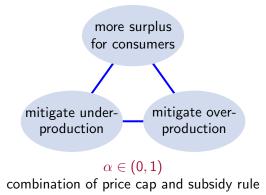
 $\alpha = 1$

consumer surplus + firm's profit (efficiency)

encourage production with piece-rate/capped subsidy

loss from underproduction loss from overproduction





Closest literature

Monopoly regulation:
 Baron and Myerson (1982), Lewis and Sappington (1988a,b),
 Armstrong (1999), Armstrong and Sappington (2007)

Mechanism design with worst-case regret:
 Hurwicz and Shapiro (1978), Bergemann and Schlag (2008, 2011),
 Manski (2011), Renou and Schlag (2011), Beviá and Corchón (2019),
 Kasberger and Schlag (2020), Malladi (2020)
 Robust mechanism design:
 Garrett (2014), Carroll (2019)

 Delegation: Holmström (1977, 1984), Alonso and Matouschek (2008), Ambrus and Egorov (2017), Kolotilin and Zapechelnyuk (2019), Amador and Bagwell (2021)

Roadmap

- Environment
- Main result
- Extensions
- Conclusion

Environment

- A monopolistic firm and a mass one of consumers
- $V:[0,1] \to [0, \bar{v}]$: a decreasing u.s.c. inverse demand function $\ (q,p) \text{ is feasible if } p \leqslant V(q)$
- \bullet $C:[0,1]\rightarrow \textbf{R}_{+}$ with C(0)=0: an increasing l.s.c. cost function

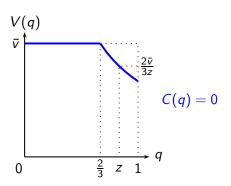
Environment

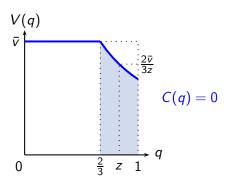
Maximal total surplus is

$$OPT = \max_{q \in [0,1]} \underbrace{\int_{0}^{q} V(z) dz}_{\text{total value to consumers}} - C(q)$$

 \bullet If the firm produces q, the distortion is

DSTR = OPT -
$$\left(\int_0^q V(z) dz - C(q)\right)$$

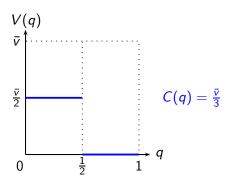


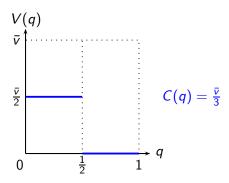


• If the firm produces $q = \frac{2}{3}$,

DSTR =
$$\frac{2\bar{v}}{3} \int_{\frac{2}{3}}^{1} \frac{1}{z} dz = -\frac{2\bar{v}}{3} \log \frac{2}{3} > 0$$

The firm underproduces





• If the firm produces $q = \frac{1}{2}$,

DSTR =
$$0 - \left(\frac{\bar{v}}{4} - \frac{\bar{v}}{3}\right) = \frac{\bar{v}}{3} - \frac{\bar{v}}{4} > 0$$

The firm overproduces

Regulatory policy

A policy is an u.s.c. function

$$\rho: [0,1] \times [0,\bar{v}] \to \mathbf{R}$$

- if the firm sells q at price p, then it receives $\rho(q, p)$
- if $\rho(q,p) > qp$, a subsidy of $\rho(q,p) qp$
- if $\rho(q,p) = qp, \forall q, p$, the firm is unregulated
- The firm can stay out of business with a profit of zero

Regulatory policy: examples

• A lump-sum subsidy w > 0 if quantity exceeds \tilde{q} :

$$\rho(q,p) = \begin{cases} qp, & \text{if } q < \tilde{q} \\ qp + w, & \text{if } q \geqslant \tilde{q} \end{cases}$$

A price cap of k:

$$\rho(q,p) = \begin{cases} qp, & \text{if } p \leqslant k \\ -\infty, & \text{if } p > k \end{cases}$$

- A cap of k on the revenue per unit: $\rho(q, p) = \min\{qp, qk\}$
- ullet A proportional tax: ho(q,p)=(1- au)qp, for some $au\in(0,1)$
- A lump-sum tax: $\rho(q,p) = qp w$, for some w > 0Alibaba faces record \$2.8 billion antitrust fine in China

Timing of the game

- ullet The regulator chooses and commits to a policy ho
- The firm privately observes (V, C); it chooses (q, p) and obtains the market revenue qp
- The regulator transfers $\rho(q,p) qp$ to the firm

Firm's best response and regulator's payoff

Fix a policy ρ and a demand and cost scenario (V, C):

If the firm sells q at price p,
 the firm's profit and consumer surplus are:

$$\mathrm{FP} =
ho(q,p) - C(q), \quad \mathrm{CS} = \int_0^q V(z) \; \mathrm{d}z -
ho(q,p)$$

- \bullet (q, p) is a best response to (V, C) under ρ if it maximizes FP among all feasible (q, p)
- The regulator's payoff is

$$CS + \alpha FP, \ \alpha \in [0, 1]$$

The regulator's complete-information payoff is OPT

Claim

Suppose that the regulator knows (V, C). Then

$$\max(CS + \alpha FP) = OPT$$
,

where the maximum is over all policies ρ and all firm's best responses (q, p) to (V, C) under ρ .

- Let q^* denote the socially optimal quantity
- Let $ho(q^*,V(q^*))=C(q^*)$ ho(q,p)=0 for $(q,p)
 eq (q^*,V(q^*))$

The regulator's complete-information payoff is OPT

Claim

Suppose that the regulator knows (V, C). Then

$$\max(CS + \alpha FP) = OPT,$$

where the maximum is over all policies ρ and all firm's best responses (q, p) to (V, C) under ρ .

ullet The regulator's complete-information payoff is independent of lpha

Simplifying regret

Fix a policy ρ and a demand and cost scenario (V, C):

The firm chooses (q, p). Then

RGRT = Complete-info payoff – Incomplete-info payoff
= OPT – (CS +
$$\alpha$$
FP)
= OPT – (CS + FP) + (1 – α)FP
= DSTR + (1 – α)FP

Simplifying regret

Fix a policy ρ and a demand and cost scenario (V, C):

The firm chooses (q, p). Then

RGRT = Complete-info payoff - Incomplete-info payoff
= OPT - (CS +
$$\alpha$$
FP)
= OPT - (CS + FP) + (1 - α)FP
= DSTR + (1 - α)FP
efficiency

Simplifying regret

Fix a policy ρ and a demand and cost scenario (V, C):

The firm chooses (q, p). Then

$$\begin{split} \mathrm{RGRT} &= \mathsf{Complete\text{-}info\ payoff} - \mathsf{Incomplete\text{-}info\ payoff} \\ &= \mathrm{OPT} - (\mathrm{CS} + \alpha \mathrm{FP}) \\ &= \mathrm{OPT} - (\mathrm{CS} + \mathrm{FP}) + (1 - \alpha) \mathrm{FP} \\ &= \underbrace{\mathrm{DSTR}}_{\mathsf{efficiency}} + \underbrace{(1 - \alpha) \mathrm{FP}}_{\mathsf{redistribution}} \end{split}$$

Worst-case regret approach

The regulator's problem is

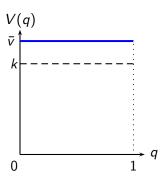
where

- ullet maximum is over all (V, C)
 - talk: the firm breaks ties against the regulator
- ullet minimization is over all policies ho

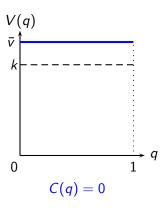
Roadmap

- Environment
- Main result
 - Lower bound on worst-case regret
 - Upper bound on worst-case regret by optimal policy
- Extensions
- Conclusion

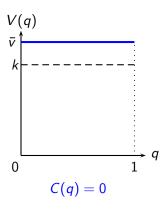
Suppose regulator imposes a price cap k



Suppose regulator imposes a price cap k

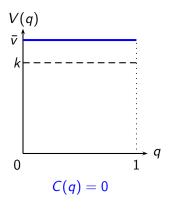


Suppose regulator imposes a price cap k



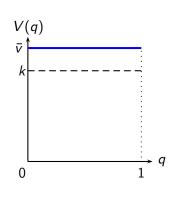
DSTR = 0, FP =
$$k$$

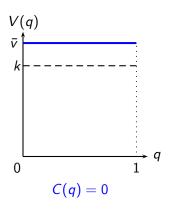
RGRT = $(1 - \alpha)k$



DSTR = 0, FP =
$$k$$

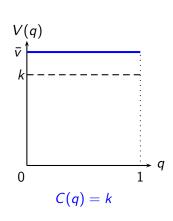
RGRT = $(1 - \alpha)k$

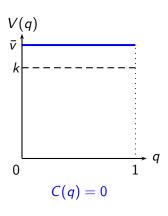




DSTR = 0, FP =
$$k$$

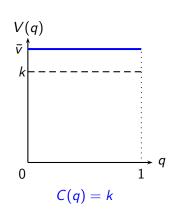
RGRT = $(1 - \alpha)k$





DSTR = 0, FP =
$$k$$

RGRT = $(1 - \alpha)k$



DSTR =
$$\bar{v} - k$$
, FP = 0
RGRT = $\bar{v} - k$

Let
$$(1-\alpha)k_{\alpha} = \bar{\mathbf{v}} - k_{\alpha} \Longrightarrow k_{\alpha} = \frac{\bar{\mathbf{v}}}{2-\alpha}$$

Let
$$(1-\alpha)k_{\alpha} = \bar{v} - k_{\alpha} \Longrightarrow k_{\alpha} = \frac{\bar{v}}{2-\alpha}$$

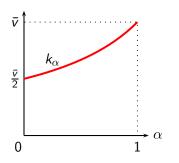
Claim

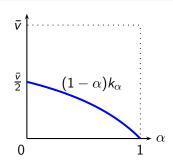
The worst-case regret under any policy is at least $(1 - \alpha)k_{\alpha}$.

Let
$$(1-\alpha)k_{\alpha} = \bar{\mathbf{v}} - k_{\alpha} \Longrightarrow k_{\alpha} = \frac{\bar{\mathbf{v}}}{2-\alpha}$$

Claim

The worst-case regret under any policy is at least $(1-\alpha)k_{\alpha}$.





Lower bound on worst-case regret

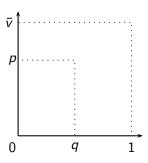
Theorem

Let

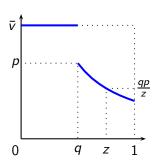
$$LB(q, p) = \min \{ (1 - \alpha)qk_{\alpha} - qp \log q, \ q(k_{\alpha} - p) \}.$$

The worst-case regret under any policy is at least

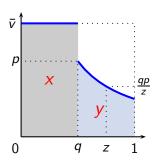
$$\max_{q \in [0,1], \ p \in [0,k_\alpha]} \mathrm{LB}(q,p).$$



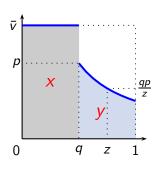
Fix a policy ρ . Pick any (q, p).



Fix a policy ρ . Pick any (q, p). Let $V(z) = \bar{v}, \forall z \leqslant q; \frac{qp}{z}, \forall z > q$



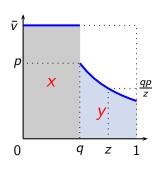
Fix a policy
$$\rho$$
. Pick any (q, p) .
Let $V(z) = \bar{v}, \forall z \leqslant q; \frac{qp}{z}, \forall z > q$
Let $\mathbf{x} = \max_{q' \leqslant q} \rho(q', p')$
 $\mathbf{y} = \max_{q' \geqslant q, q'p' \leqslant qp} \rho(q', p')$



Fix a policy
$$\rho$$
. Pick any (q, p) .
Let $V(z) = \bar{v}, \forall z \leqslant q; \frac{qp}{z}, \forall z > q$
Let $\mathbf{x} = \max_{q' \leqslant q} \rho(q', p')$
 $\mathbf{y} = \max_{q' \geqslant q, q'p' \leqslant qp} \rho(q', p')$

1. If $\max\{x,y\} \leqslant qk_{\alpha}$, a firm with fixed cost qk_{α} won't produce:

$$RGRT = DSTR = q(\bar{v} - k_{\alpha}) + \int_{q}^{1} \frac{qp}{z} dz$$
$$= q(1 - \alpha)k_{\alpha} - qp \log(q) \geqslant LB(q, p)$$

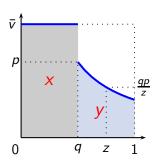


Fix a policy ρ . Pick any (q, p). Let $V(z) = \overline{v}, \forall z \leqslant q; \frac{qp}{z}, \forall z > q$ Let $x = \max_{q' \leqslant q} \rho(q', p')$ $y = \max_{q' \geqslant q, q'p' \leqslant qp} \rho(q', p')$

2. If $\max\{x,y\} \geqslant qk_{\alpha}$ and $x \geqslant y$, a firm with zero cost has $\mathrm{FP} \geqslant qk_{\alpha}$ and produces less than q:

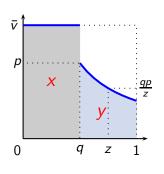
RGRT
$$\geqslant (1 - \alpha)qk_{\alpha} + \text{DSTR} \geqslant (1 - \alpha)qk_{\alpha} + \int_{q}^{1} \frac{qp}{z} dz$$

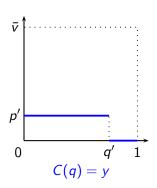
= $q(1 - \alpha)k_{\alpha} - qp\log(q) \geqslant \text{LB}(q, p)$



Fix a policy
$$\rho$$
. Pick any (q, p) .
Let $V(z) = \bar{v}, \forall z \leqslant q; \frac{qp}{z}, \forall z > q$
Let $x = \max_{q' \leqslant q} \rho(q', p')$
 $y = \max_{q' \geqslant q, q'p' \leqslant qp} \rho(q', p')$

3. If $\max\{x,y\}\geqslant qk_{\alpha}$ and $y\geqslant x$, there exists q',p' in light-blue area such that $\rho(q',p')=y\geqslant qk_{\alpha}$





3. If $\max\{x,y\} \geqslant qk_{\alpha}$ and $y \geqslant x$, there exists q',p' in light-blue area such that $\rho(q',p')=y\geqslant qk_{\alpha}$

Consider RHS firm:

$$RGRT = DSTR \geqslant qk_{\alpha} - q'p' \geqslant q(k_{\alpha} - p) \geqslant LB(q, p)$$

Lower bound on worst-case regret

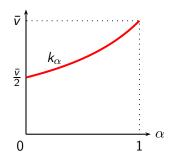
Theorem

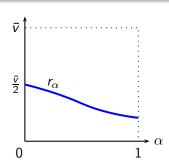
Let

$$LB(q, p) = \min \{ (1 - \alpha)qk_{\alpha} - qp \log q, \ q(k_{\alpha} - p) \}.$$

The worst-case regret under any policy is at least

$$r_{\alpha} := \max_{q \in [0,1], \ p \in [0,k_{\alpha}]} \mathrm{LB}(q,p).$$





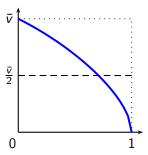
Roadmap

- Environment
- Main result
- Environment
 - Lower bound on worst-case regret
 - Upper bound on worst-case regret by optimal policy
- Extensions
- Conclusion

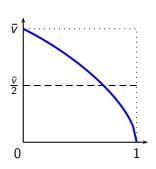
Theorem ($\alpha = 0$)

The worst-case regret is at most $r_0 = \frac{\bar{v}}{2}$ given the price cap $k_0 = \frac{\bar{v}}{2}$.

Proof idea:

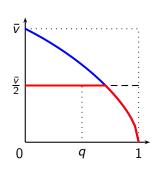


Proof idea:



if q=0, for consumers with value $\leqslant \frac{\bar{v}}{2}$ each adds $\leqslant \frac{\bar{v}}{2}$ to total surplus; for consumers with value $\geqslant \frac{\bar{v}}{2}$, average cost is $\geqslant \frac{\bar{v}}{2}$, so each adds $\leqslant \frac{\bar{v}}{2}$.

Proof idea:



if q=0, for consumers with value $\leqslant \frac{\bar{v}}{2}$ each adds $\leqslant \frac{\bar{v}}{2}$ to total surplus; for consumers with value $\geqslant \frac{\bar{v}}{2}$, average cost is $\geqslant \frac{\bar{v}}{2}$, so each adds $\leqslant \frac{\bar{v}}{2}$.

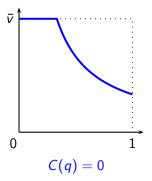
if q>0, for consumers who are served, regulator loses at most $p\leqslant \frac{\bar{v}}{2}$ each; for consumers who are not served, regulator loses $\leqslant \frac{\bar{v}}{2}$ each.

Theorem ($\alpha = 1$)

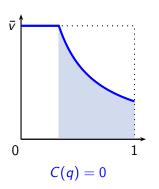
The worst-case regret is at most r_1 given the policy:

$$\rho(q,p) = \min\{ q \bar{v}, qp + r_1 \}.$$

Proof idea:

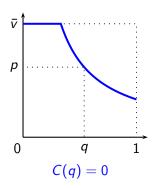


Proof idea:



unregulated firm serve \bar{v} consumers, regulator loses surplus in light-blue area;

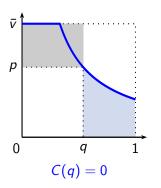
Proof idea:



unregulated firm serve \bar{v} consumers, regulator loses surplus in light-blue area;

If (q, p), subsidize $(\bar{v} - p)q$, light-blue shrinks to $-qp\log(q)$;

Proof idea:



unregulated firm serve \bar{v} consumers, regulator loses surplus in light-blue area;

If (q, p), subsidize $(\bar{v} - p)q$, light-blue shrinks to $-qp\log(q)$;

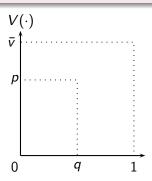
but, subsidy $(\bar{v} - p)q$ might incentivize overproduction; regulator loses $(\bar{v} - p)q$ in light-gray

How much additional surplus?

Question: an unregulated firm sells q at price p and doesn't want to produce more. How much additional surplus?

Lemma

The maximal additional surplus is $-qp \log q$.

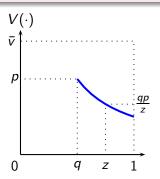


How much additional surplus?

Question: an unregulated firm sells q at price p and doesn't want to produce more. How much additional surplus?

Lemma

The maximal additional surplus is $-qp \log q$.

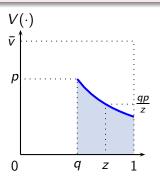


How much additional surplus?

Question: an unregulated firm sells q at price p and doesn't want to produce more. How much additional surplus?

Lemma

The maximal additional surplus is $-qp \log q$.



$0 \leqslant \alpha \leqslant 1$: optimal policy

Theorem $(0 \leqslant \alpha \leqslant 1)$

The worst-case regret is at most r_{α} given the policy:

$$\rho(q,p)=\min\{\ q\ k_{\alpha}\ ,\ qp+s\ \},$$

with $s_{\alpha} \leqslant s \leqslant r_{\alpha}$.

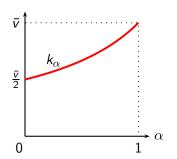
$0 \leqslant \alpha \leqslant 1$: optimal policy

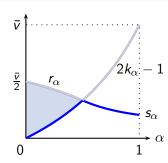
Theorem (0 $\leqslant \alpha \leqslant 1$)

The worst-case regret is at most r_{α} given the policy:

$$\rho(q,p) = \min\{ q k_{\alpha}, qp + s \},\$$

with $s_{\alpha} \leqslant s \leqslant r_{\alpha}$.





• The firm gets less than k_{α} per unit

ullet The firm gets less than k_lpha per unit this caps how much consumer surplus the firm can extract

- ullet The firm gets less than k_lpha per unit this caps how much consumer surplus the firm can extract
- ullet The firm gets a piece-rate subsidy up to k_lpha

- ullet The firm gets less than k_lpha per unit this caps how much consumer surplus the firm can extract
- The firm gets a piece-rate subsidy up to k_{α} this effectively increases the firm's revenue per unit to k_{α}

- ullet The firm gets less than k_lpha per unit this caps how much consumer surplus the firm can extract
- The firm gets a piece-rate subsidy up to k_{α} this effectively increases the firm's revenue per unit to k_{α}
- ullet The firm's total subsidy is capped by s

- ullet The firm gets less than k_lpha per unit this caps how much consumer surplus the firm can extract
- The firm gets a piece-rate subsidy up to k_{α} this effectively increases the firm's revenue per unit to k_{α}
- The firm's total subsidy is capped by s overproduction induced by subsidy is under control

Regulation in practice

Price cap regulation:

- British Telecom (Littlechild 1983), gas, airports, water, electricity and the railways (Cowan 2002)
- U.S. telecommunications industry (Ai and Sappington 2002)

Year	Rate of Return Regulation	Rate Case Moratoria	Earnings Sharing Regulation	Price Cap Regulation	Other
1041	riogulation	Moratoria	i logulation	riogalation	Julei
1985	50	0	0	0	0
1986	45	5	0	0	0
1987	36	10	3	0	1
1988	35	10	4	0	1
1989	31	10	8	0	1
1990	25	9	14	1	1
1991	21	8	19	1	1
1992	20	6	20	3	1
1993	19	5	22	3	1
1994	22	2	19	6	1
1995	20	3	17	9	1
1996	15	4	5	25	1
1997	13	4	4	28	1
1998	14	3	2	30	1
1999	12	1	1	35	1

Regulation in practice

Piece-rate subsidy:

Feed-in tariffs:

"FiTs usually take the form of a fixed price or constant premium. A fixed-price FiT removes investor exposure to low market prices and transfers the associated risk to the policymaker as a risk of excessive subsidy cost."

Roadmap

- Environment
- Main result
- Extensions
- Conclusion

Incorporating additional knowledge

- We made no assumptions on (V, C), except for monotonicity, semicontinuity, and the range of consumers' values
- The regulator may know more than this
- The regulator's problem is

$$\begin{array}{c}
\mathbf{minimize} \quad \max_{\rho} \quad \mathbf{RGRT} \\
\rho \quad (V,C) \in \mathcal{E}
\end{array}$$

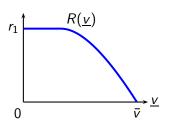
Incorporating knowledge on cost

- Suppose the regulator knows that the firm has a fixed cost plus constant marginal cost: C(q) = a + bq
- But he doesn't know the cost levels: a, b
- Our lower bound theorem still holds, since the proof uses only fixed cost functions
- Hence, our policy remains optimal

Incorporating knowledge on demand

- Suppose that the regulator knows that $\underline{v} \leqslant V(q) \leqslant \overline{v}$
- \bullet For $\alpha\leqslant\frac{1}{2},$ the worst-case regret is independent of \underline{v}
- For $\alpha = 1$, the worst-case regret is $R(\underline{v})$, which is achieved by:

$$\rho(q,p) = \min\{q\bar{v}, qp + R(\underline{v})\}\$$



Price cap optimality for sufficiently homogeneous consumers

• Suppose that the regulator knows that $\underline{v} \leqslant V(q) \leqslant \bar{v}$

Proposition (price cap optimality)

If $\underline{v} \geqslant \frac{1}{2-\alpha}\overline{v}$, it is optimal to impose a price cap k_{α} .

Roadmap

- Environment
- Main result
- Extensions
- Conclusion

Conclusion: our advocate for non-Bayesian approach

Armstrong and Sappington (2007):

- 1. Relevant information asymmetries can be difficult to characterize precisely; not clear how to formulate a prior
- 2. Multi-dimensional screening problems are typically difficult to solve

Conclusion: our advocate for worst-case regret

1. Regret has a natural interpretation:

$$\operatorname{regret} = \underbrace{\operatorname{distortion}}_{\text{efficiency}} + \underbrace{(1-\alpha) \text{ firm's profit}}_{\text{redistribution}}$$

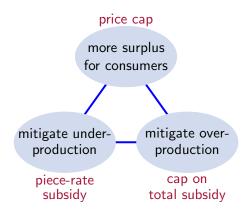
2. Worst-case regret is more relevant than worst-case payoff

Conclusion: our advocate for worst-case regret

3. Savage offers another interpretation, as observed by Linhart and Radner (1989):

Suppose the [regulator] must justify his [policy] for a group of persons who have widely varying "subjective" probability distributions. In this case, the [regulator] might want to [regulate] in such a way as to minimize the maximum "outrage" felt in the group; here "outrage" is equated to regret.

Conclusion: three objectives and three instruments



Thank you!