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Abstract

We study how to regulate a monopolistic firm using a robust-design, non-

Bayesian approach. We derive a policy that minimizes the regulator’s worst-case

regret, where regret is the difference between the regulator’s complete-information

payoff and his realized payoff. When the regulator’s payoff is consumers’ surplus,

he caps the firm’s average revenue. When his payoff is the total surplus of both

consumers and the firm, he offers a piece-rate subsidy to the firm while capping

the total subsidy. For intermediate cases, the regulator combines these three pol-

icy instruments to balance three goals: protecting consumers’ surplus, mitigating

underproduction, and limiting potential overproduction.
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1 Introduction

Regulating monopolies is challenging. A monopolistic firm has the market power to

set its price above the price in an oligopolistic or competitive market. For instance,

Cooper et al. (2018) show that prices at monopoly hospitals are 12 percent higher than

those in markets with four or five competitors. In order to protect consumers’ surplus, a

regulator may want to constrain the firm’s price. However, a price-constrained firm may

fail to obtain enough revenue to cover its fixed cost, so it may end up not producing.

The regulator must balance the need to protect consumers’ surplus and the need to

not distort production.

This challenge could be solved easily if the regulator had complete information

about the industry. The regulator could ask the firm to produce the efficient quantity

and to set its price equal to the marginal cost. He could then subsidize the firm for

all of its other costs. However, the regulator typically has limited information about

consumer demand or the production costs of the firm. How should the regulatory

policy be designed when the regulator knows much less about the industry than the

firm does? If the regulator wants a policy that works “fairly well” in all circumstances,

what should this policy look like?

We study this classic problem of monopoly regulation (e.g., Baron and Myerson

(1982)) using a robust-design, non-Bayesian approach. The regulator’s payoff is a

weighted sum of consumers’ surplus and the firm’s profit, with weakly more weight

on consumers’ surplus than on the firm’s profit. He can regulate the firm’s quantity

and price. He can both subsidize the firm and tax it. Given a policy, the firm chooses

a quantity-price pair under its demand curve to maximize its profit. The regulator’s

regret is, by definition, the difference between what he could have gotten if he had

complete information about the industry and what he actually gets. Thus, regret can

be interpreted as “money left on the table” due to the regulator’s lack of information.

The regulator evaluates a policy by the worst-case regret under this policy, i.e., the

maximal regret he can incur across all possible demand and cost scenarios. An optimal

policy minimizes the worst-case regret.

Our use of the minimax-regret approach to uncertainty is the main way that our

approach differs from that taken in the existing literature on monopoly regulation,

where the Bayesian approach is the norm. The Bayesian approach would assign a

prior to the regulator over all possible demand and cost scenarios, and characterize a
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policy that minimizes the regulator’s expected regret.1 We instead focus on industries

in which information asymmetry is so pronounced that there is no obvious way to

formulate a prior, or industries where new sources of uncertainty arise all the time.

In response, the regulator looks for a policy that leaves as little “money” on the table

as possible in all circumstances. We will show that the minimax-regret approach (i)

provides useful insights on the regulation problem, and (ii) remains tractable for broad

kinds of multidimensional information asymmetry.

To illustrate our optimal policy, we begin with two polar cases of the regulator’s

payoff. At one end, he puts no weight on the firm’s profit, so his payoff is consumers’

surplus. At the other end, he puts the same weight on the firm’s profit as on consumers’

surplus, so his payoff is the total surplus of consumers and the firm.

If the regulator’s payoff is consumers’ surplus, we show that it is optimal to just cap

the firm’s average revenue. A cap on average revenue bounds how much consumers’

surplus the firm can extract. In this case, consumers benefit from a lower cap. However,

the cap may discourage a firm which should have produced from producing. In this

case, consumers lose due to the firm’s underproduction. The optimal level of the cap

is chosen to balance consumers’ gain from their protected surplus and their loss from

the firm’s underproduction. We show that the regulator can also implement this cap

on average revenue by imposing a price cap.

If the regulator’s payoff is the total surplus of consumers and the firm, he has no

redistribution incentive but simply wants the firm to produce as efficiently as possible.

An unregulated, monopolistic firm tends to produce less than the efficient quantity in

order to charge a high price. To mitigate such underproduction, the regulator offers

a piece-rate subsidy: for each unit that the firm sells, he subsidizes the firm for the

difference between its price and a target level. This subsidy lifts the firm’s average

revenue to the target level, so it encourages the firm to serve more consumers than just

those with high values. On the other hand, the subsidy may induce the firm to produce

more than the efficient quantity. To limit the degree of potential overproduction, the

regulator imposes a cap on the total subsidy to the firm.

For intermediate cases, the regulator puts some weight on the firm’s profit, but

less than the weight he puts on consumers’ surplus. In these cases, the optimal policy

combines the three policy instruments that are used in the two polar cases. First, the

firm’s average revenue is capped at some target level. Second, if the firm prices below

1Minimizing the regulator’s expected regret is the same as maximizing his expected payoff, because
the regulator’s expected complete-information payoff is constant over all policies.
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this target level, the regulator offers a piece-rate subsidy which lifts the firm’s average

revenue to this target level. Third, the regulator sets a cap on the total subsidy to

the firm. As the weight on the firm’s profit increases, the regulator’s redistribution

incentive weakens, so the cap on the firm’s average revenue increases as well.

The minimax-regret approach advances our knowledge of monopoly regulation in

two significant ways. First, it delineates the trade-off that the regulator must make

among his three goals: protecting consumers’ surplus, mitigating underproduction,

and limiting potential overproduction. Second, it demonstrates how the regulator can

use three different policy instruments to achieve these three goals. Specifically, the

cap on average revenue protects consumers’ surplus, the piece-rate subsidy mitigates

underproduction, and the cap on the total subsidy prevents severe overproduction.

We show that, among all possible policy instruments that the regulator can choose,

these three instruments are sufficient. In section 4, we discuss in detail the policy

implications of these results.

Our baseline model analyzes a setting in which the regulator has no knowledge about

the firm’s demand or cost scenarios except for an upper bound on consumers’ values.

In some applications, the regulator may know more than this. In section 5 we address

how to incorporate the regulator’s additional knowledge. For instance, the regulator

may know that the firm’s demand curve is bounded from above by one function and

from below by another. We characterize an optimal policy for any given bounding

functions. One special case is that the regulator knows the firm’s demand curve as the

firm does. In this case, the regulator knows exactly how much total consumer value the

firm has created. We show that the optimal policy no longer induces overproduction.

Another special case is the one in which the regulator knows both an upper bound and

a lower bound on consumers’ values. We show that imposing a price cap is optimal

when consumers are sufficiently homogeneous or when the weight on the firm’s profit is

small enough. Our analysis therefore shows that the minimax-regret approach remains

tractable for incorporating specific knowledge and continues to provide insights on the

problem of monopoly regulation.

Related literature. This paper contributes to the literature on monopoly regula-

tion. For an overview of earlier contributions in this field, see Caillaud et al. (1988),

Braeutigam (1989), and Laffont and Tirole (1993). Armstrong and Sappington (2007)

discuss recent developments. Our paper is closely related to Baron and Myerson (1982),

Lewis and Sappington (1988a,b), and Armstrong (1999), all of whom study how to regu-

late a privately-informed firm using the Bayesian approach. Baron and Myerson (1982)
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assume one-dimensional uncertainty about the cost function. Lewis and Sappington

(1988a) assume one-dimensional uncertainty about the demand function. Lewis and

Sappington (1988b) and Armstrong (1999) assume two-dimensional uncertainty about

both cost and demand scenarios. In our model, the firm also has private informa-

tion about both cost and demand scenarios, and this private information is infinite-

dimensional. We introduce the minimax-regret approach to the regulation problem.

We show that this approach provides new insights on the regulation problem, and also

broadens the range of multidimensional screening settings that can be studied.

The minimax-regret approach to uncertainty dates back to Wald (1950) and Savage

(1954). It has since been applied broadly in many areas, including game theory (e.g.,

Hannan (1957) and Hart and Mas-Colell (2000)), machine learning (e.g., Bubeck, Cesa-

Bianchi et al. (2012)), designing treatment rules (e.g., Manski (2004) and Stoye (2009)),

forecast aggregation (e.g., Arieli, Babichenko and Smorodinsky (2018), and Babichenko

and Garber (2021)), and algorithm design (e.g., Vera and Banerjee (2021), Feng et al.

(2024)). Our paper contributes especially to the literature on mechanism design with

the minimax-regret approach. To start with, Hurwicz and Shapiro (1978) examine a

moral hazard problem. Bergemann and Schlag (2008, 2011) examine monopoly pricing.

Renou and Schlag (2011) apply the solution concept of ε-minimax-regret to the prob-

lem of implementing social-choice correspondences. Caldentey, Liu and Lobel (2017)

characterize the dynamic-pricing rule that minimizes the seller’s worst-case regret. Be-

viá and Corchón (2019) examine the contest which minimizes the designer’s worst-case

regret. Malladi (2022) studies the optimal approval rules for innovation, Bergemann,

Gan and Li (2023) study robust persuasion when the receiver is uncertain about the

sender’s preferences and the set of feasible signal structures, and Guo and Shmaya

(2023) study the optimal mechanism for project choice within organizations.

More broadly, we contribute to the growing literature on mechanism design with

worst-case objectives. See, for instance, Chassang (2013), Carroll (2015), and Carroll

(2019) for a survey on robustness in mechanism design. In regard to the monopoly

regulation environment, one related paper in this literature is Garrett (2014), which

considers the cost-based procurement problem (Laffont and Tirole (1986)).

Our work also contributes to the delegation literature (e.g., Holmström (1984)).

Alonso and Matouschek (2008), Kolotilin and Zapechelnyuk (2019), and Amador and

Bagwell (2022) characterize conditions under which price-cap regulation is optimal

under the restriction that transfers are infeasible. In our environment, the regulator

and the firm can make transfers to each other. We characterize conditions under which
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price-cap regulation is optimal. To our knowledge, we are the first to show that a

contract that does not use transfers is optimal even in a contracting environment in

which both parties can make transfers to each other.2 From this aspect, our paper

also relates to Drexl and Kleiner (2018), which shows that a transfer-free, qualified

majority voting rule maximizes expected utilitarian welfare among strategy-proof and

anonymous rules.

2 Environment

There is a monopolistic firm and a mass one of consumers. Let P : [0, 1] → [0, v̄] be a

decreasing upper-semicontinuous inverse-demand function. Let C : [0, 1] → R+ with

C(0) = 0 be an increasing lower-semicontinuous cost function. The total consumer

value of quantity q is the area under the inverse-demand function, given by
∫ q

0
P (z) dz.

The total surplus of quantity q is thus the total consumer value minus the cost, given

by
∫ q

0
P (z) dz − C(q). The maximal total surplus is given by:

OPT(P,C) = max
q∈[0,1]

(
∫ q

0

P (z) dz − C(q)

)

. (1)

If the firm produces and sells q units, then distortion is the maximal total surplus

minus the actual total surplus, given by:

DSTR(P,C, q) = OPT(P,C)−
(
∫ q

0

P (z) dz − C(q)

)

.

To simplify notation, we sometimes omit the dependence of OPT on (P,C) and the

dependence of DSTR on (P,C, q) when no confusion arises. We will do the same for

other terms.

Example 1. Suppose that P (q) = 1− q and C(q) = q/2. It is efficient to produce and

sell q∗ = 1/2 units. The maximal total surplus is
∫ q∗

0
(1 − z) dz − q∗/2 = 1/8. If the

firm chooses q < q∗, we say that it underproduces. If the firm chooses q > q∗, we say

that it overproduces. In both cases, distortion is strictly positive. �

Regulatory policies, timing of the game, and payoffs. The firm knows (P,C)

but the regulator does not know (P,C). The firm chooses both the quantity q to sell

2Armstrong and Vickers (2010) show that it can be optimal not to use transfers in an environment
in which the agent must receive nonnegative transfers from the principal.
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and the price p paid by consumers. A quantity-price pair (q, p) is feasible if and only

if it is under the inverse-demand function, i.e., if and only if p 6 P (q). The firm can

choose any feasible quantity-price pair. A consumer chooses to buy if the price p is

below their value. If the firm’s choice (q, p) cannot clear the market, then the product

is rationed.3

The regulator observes the firm’s choice (q, p). A regulatory policy is given by an

upper-semicontinuous function ρ : [0, 1]× [0, v̄] → R∪{−∞}. If the firm chooses (q, p),

it receives the revenue ρ(q, p). This revenue is the sum of the market revenue qp and

any tax or subsidy, ρ(q, p)− qp, imposed by the regulator. We assume that ρ(0, 0) > 0,

so the firm can stay out of business without suffering a negative profit. This is the

firm’s participation constraint.

The timing of the game is as follows: (i) the regulator publicly chooses and commits

to a policy ρ; (ii) the firm privately observes (P,C), publicly chooses (q, p), and obtains

the market revenue qp; (iii) the regulator transfers ρ(q, p)− qp to the firm. (If ρ(q, p)−
qp < 0, it represents a tax on the firm.) The firm’s choice (q, p) provides evidence to

the regulator that P (q) > p. This evidence aspect of the firm’s choice (q, p) was not

present in Baron and Myerson (1982) because they assume that the regulator knows

P , or in Lewis and Sappington (1988a,b) and Armstrong (1999) because they assume

that the regulator cannot observe the firm’s sales q.

There are many policy instruments that the regulator can use. To illustrate, we

give four examples of policies:

1. The regulator can give the firm a lump-sum subsidy s > 0 if it sells more than

a certain quantity q̃. The policy is ρ(q, p) = qp if q < q̃ and ρ(q, p) = qp + s if

q > q̃.

2. The regulator can charge a proportional tax by setting ρ(q, p) = (1 − τ)qp for

some τ ∈ (0, 1).

3. The regulator can impose a price cap at k, such that the firm cannot price above

k. It gets the market revenue qp if it prices below k. The policy is ρ(q, p) = qp

if p 6 k and ρ(q, p) = −∞ if p > k.

4. The regulator can require that the firm get no more than k per unit by setting

ρ(q, p) = min{qk, qp}. If the firm prices above k, it pays a tax of q(p− k) to the

regulator.

The regulator could ask the firm to report its inverse-demand and cost functions,

and then determine the firm’s quantity, price, and revenue as a function of its report.

3The firm’s choice (q, p) cannot clear the market if sup{q′ ∈ [0, 1] : P (q′) > p} > q.
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For any such direct-revelation mechanism, there exists a revenue function ρ(q, p) that

induces the same outcome. This is referred to as the Taxation Principle (Rochet (1986)

and Guesnerie (1998)). Hence, it is without loss of generality to work directly with the

revenue function ρ(q, p).

Fix a policy ρ and a pair of (P,C) functions. If the firm sells q units at price p,

then consumers’ surplus and the firm’s profit are given by:

CS(ρ, P, q, p) =

∫ q

0

P (z) dz − ρ(q, p), and FP(ρ, P, C, q, p) = ρ(q, p)− C(q). (2)

In the definition of consumers’ surplus, we make two assumptions. First, we assume

that any subsidy to the firm is paid by consumers through their taxes and that any

tax paid by the firm is passed on to consumers; moreover, there is no social cost of

public funds (e.g., Baron and Myerson (1982)). Second, we assume efficient rationing,

so when the firm’s choice (q, p) cannot clear the market, consumers with the highest

values are served.4 In subsection 3.3, we discuss whether and when the firm wants to

clear the market so rationing is not needed.

The firm’s profit does not depend directly on the inverse-demand function P . How-

ever, since P determines the set of feasible quantity-price pairs for the firm, we include

P as an argument in the firm’s profit. We say that (q, p) is a firm’s best response to

(P,C) under policy ρ if it maximizes the firm’s profit over all feasible quantity-price

pairs. The firm may have multiple best responses. Its participation constraint implies

that FP(ρ, P, C, q, p) > 0 for every best response (q, p).

The regulator’s payoff is a weighted sum, CS+αFP, of consumers’ surplus and the

firm’s profit. The parameter α ∈ [0, 1] is the welfare weight the regulator puts on the

firm’s profit.

The regulator’s complete-information payoff. Fix a pair of (P,C) functions.

We let CIP(P,C) denote the regulator’s complete-information payoff. This is what he

could achieve if he knew (P,C) and thus chose a policy ρ according to (P,C). Formally,

CIP(P,C) = max
ρ,q,p

(CS(ρ, P, q, p) + αFP(ρ, P, C, q, p)) ,

where the maximum is over all ρ and all of the firm’s best responses (q, p) to (P,C)

under ρ.

4Suppose that the firm’s choice (q, p) cannot clear the market. Let q′′ = sup{q′ ∈ [0, 1] : P (q′) >

p}. Without efficient rationing, consumers’ surplus is at least
∫

q
′′

q′′−q
P (z) dz − ρ(q, p) and at most

∫

q

0
P (z) dz − ρ(q, p).
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Claim 1 below states that the regulator’s complete-information payoff equals the

maximal total surplus. The regulator would ask the firm to sell the efficient quantity

and to price at the marginal consumer’s value at this quantity. He would then make

sure that the firm’s revenue equals its cost. This policy ensures that the maximal total

surplus is generated and that all of this surplus goes to consumers. Hence, although

the regulator’s payoff is a function of the weight α on the firm’s profit, his complete-

information payoff does not depend on α.

Claim 1. For any pair of (P,C) functions, CIP(P,C) = OPT(P,C).

Proof. First, the regulator’s complete-information payoff is at most OPT(P,C). In-

deed,

CS(ρ, P, q, p) + αFP(ρ, P, C, q, p) 6 CS(ρ, P, q, p) + FP(ρ, P, C, q, p) 6 OPT(P,C),

for every policy ρ and every best response (q, p) of the firm to (P,C) under ρ. Here,

the first inequality follows from α 6 1 and the fact that FP(ρ, P, C, q, p) > 0, and the

second inequality follows from the definitions of OPT, CS, and FP in (1) and (2).

Second, let q∗ denote an efficient quantity that achieves the maximal total surplus.

The regulator can achieve OPT(P,C) by setting ρ(q, p) = C(q∗) if (q, p) = (q∗, P (q∗)),

and ρ(q, p) = 0 otherwise. Choosing (q, p) = (q∗, P (q∗)) is a firm’s best response to

(P,C) under ρ. Since CS(ρ, P, q, p) = OPT(P,C) and FP(ρ, P, C, q, p) = 0, it follows

that the regulator’s payoff is OPT(P,C). �

Regret. When the regulator does not know (P,C), no policy can guarantee that

the regulator gets his complete-information payoff. Given a policy ρ, a pair of (P,C)

functions, and a firm’s best response (q, p) to (P,C) under ρ, the regulator’s regret is

the difference between his complete-information payoff and his actual payoff:

RGRT(ρ, P, C, q, p) = CIP(P,C)− (CS(ρ, P, q, p) + αFP(ρ, P, C, q, p)) .

Our next result shows that regret is a weighted sum of distortion and the firm’s profit.

Claim 2. Given a policy ρ, a pair of (P,C) functions, and a firm’s best response (q, p)

to (P,C) under ρ, we have:

RGRT(ρ, P, C, q, p) = DSTR(P,C, q) + (1− α)FP(ρ, P, C, q, p).
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Proof. Suppressing the dependence on (ρ, P, C, q, p), we have

RGRT = CIP− (CS + αFP) = OPT− (CS + αFP)

= OPT− (CS + FP) + (1− α)FP = DSTR + (1− α)FP.

Here, the first equality is the definition of regret, the second equality follows from Claim

1 that CIP = OPT, and the last equality follows from the definition of distortion. �

Regret has a natural interpretation in our setting. DSTR represents the loss in

the regulator’s efficiency objective, since he wishes the firm to produce as efficiently

as possible. (1 − α)FP represents the loss in his redistribution objective, since the

regulator wants to give more surplus to consumers rather than to the firm. The less

weight α the regulator puts on the firm’s profit, the more he cares about redistribution,

and the higher his regret is.

The regulator’s problem. The regulator chooses a policy that minimizes his worst-

case regret. Thus, the regulator’s problem is:

minimize
ρ

max
P,C,q,p

RGRT(ρ, P, C, q, p),

where the minimization is over all ρ, and the maximum is over all (P,C) and all of the

firm’s best responses (q, p) to (P,C) under ρ.

Formulating the regulator’s problem as a minimax-regret problem is our main de-

parture from the prior literature on monopoly regulation (e.g., Armstrong and Sapping-

ton (2007)). If we assigned a prior to the regulator over the possible inverse-demand

and cost functions, then choosing a policy that maximizes the regulator’s expected pay-

off would be the same as choosing one that minimizes his expected regret.5 Instead, we

consider environments in which information asymmetry is so pronounced that there is

no obvious way to formulate a prior. The regulator looks for a policy that works fairly

well in all circumstances.

Remark 1. In the definition of the regulator’s complete-information payoff, we assume

that the firm breaks ties in favor of the regulator, whereas in the definition of the

regulator’s problem, we assume that the firm breaks ties against the regulator. These

assumptions are for convenience only and do not affect the value of the regulator’s

5This is because the expected complete-information payoff of the regulator is the same across all
policies.
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complete-information payoff in Claim 1 or the solution to the regulator’s problem in

Theorems 3.1 to 3.3.6 �

3 Main result

In this section we first establish a lower bound on the regulator’s worst-case regret

under any policy. We do this in subsection 3.1 by showing that there is a nontrivial

trade-off among (i) protecting consumers’ surplus, (ii) mitigating underproduction, and

(iii) limiting potential overproduction. We then show in subsection 3.2 that the worst-

case regret under our policy is at most this lower bound, so it is optimal. In subsection

3.3, we discuss when the firm wants to clear the market.

3.1 Lower bound on worst-case regret

We begin with an example in Figure 1 to illustrate the trade-off between (i) protecting

consumers’ surplus and (ii) mitigating underproduction. Suppose that the regulator

constrains how much consumers’ surplus the firm can extract by imposing a price cap

at k. This price cap has opposing implications for the two market scenarios in Figure

1.

P

0 1

v̄

q

k C(q) = 0

DSTR = 0,FP = k

RGRT = (1− α)k

P

0 1

v̄

q

k C(q) =

{

k if q > 0,

0 if q = 0.

DSTR = v̄ − k,FP = 0

RGRT = v̄ − k

Figure 1: protecting consumers’ surplus versus mitigating underproduction

In the left panel, every consumer has the highest value v̄, and the cost is zero. The

firm will price at k and serve all consumers. There is no distortion since all consumers

6If in the definition of CIP(P,C) we assumed that the firm breaks ties against the regulator, we
would define

CIP(P,C) = sup
ρ

min
q,p

(CS(ρ, P, q, p) + αFP(ρ, P, C, q, p)),

where the minimum is over all of the firm’s best responses (q, p) to (P,C) under ρ. Then the supremum
may not be achieved, but the value of CIP(P,C) would be the same. Similarly, if we assumed that
the firm breaks ties in favor of the regulator in the regulator’s problem, then the “worst-case” pair
(P,C) may not exist, but the solution to the regulator’s problem would remain the same.
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are served, as they should be. The firm’s profit is k, so regret is (1 − α)k. The lower

the price cap k, the lower this regret from the firm’s profit. In the right panel, every

consumer still has the highest value v̄, but now the firm has a fixed cost of k. It is a

firm’s best response not to produce. The firm’s profit is zero, but distortion is (v̄ − k),

which is the maximal total surplus that could have been generated. Thus, regret is

(v̄ − k). The lower the price cap k, the higher this regret from distortion. Combining

these two market scenarios, we conclude that the worst-case regret given the price cap

k is at least max{(1− α)k, v̄ − k}.
This example assumes a price-cap policy, yet the trade-off in the example applies

to any policy. If a policy offers very high revenue to the firm, it may give the firm

too much profit, causing the regulator high regret due to the firm’s profit. However,

if the policy constrains the firm’s revenue too much, it may worsen the problem of

underproduction, causing high regret from distortion. We now provide a lower bound

on the worst-case regret based on this trade-off.

Claim 3. Let fα = 1
2−α

be such that (1 − α)fα = 1 − fα, so k = fαv̄ minimizes

max{(1−α)k, v̄−k}. Then the worst-case regret under any policy is at least (1−fα)v̄ =
1−α
2−α

v̄.

Proof. Fix a policy ρ. Let k = max(q,p)∈[0,1]×[0,v̄] ρ(q, p) be the highest revenue under ρ.

If the firm’s (P,C) is given by the left panel of Figure 1, it chooses (q, p) that maximizes

its revenue ρ(q, p). Its profit is k, so regret is at least (1 − α)k. If the firm’s (P,C)

is given by the right panel of Figure 1, it is a firm’s best response not to produce, so

regret is (v̄− k). Hence, the worst-case regret under ρ is at least max{(1−α)k, v̄− k},
which is at least (1− fα)v̄. �

Building on Claim 3, our next theorem incorporates overproduction and the trade-

off between mitigating underproduction and limiting potential overproduction. An

unregulated, monopolistic firm tends to underproduce, especially when consumers are

sufficiently heterogeneous in their values. In such cases, the firm tends to serve only

consumers with high values in order to charge a high price. If the regulator does not

encourage the firm to produce more and thereby also serve consumers with moderate

values, he suffers regret from underproduction. This is reflected by the first term in (3)

and cases 1 and 2 in the proof of Theorem 3.1. However, if the regulator subsidizes the

firm for producing more, his subsidy may cause overproduction, because the firm may

choose an inefficiently large quantity due to the subsidy. In such cases, the regulator
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suffers regret from overproduction. This is reflected by the second term in (3) and case

3 in the proof.

Theorem 3.1 refines the lower bound on the worst-case regret in Claim 3. We later

show in subsection 3.2 that the lower bound in this theorem is tight.

Theorem 3.1 (Lower bound on worst-case regret). Let

rα = max
(q,p)∈[0,1]×[0,fαv̄]

min {q(1− fα)v̄ − qp log q, q(fαv̄ − p)} . (3)

The worst-case regret under any policy is at least rα.

Proof. Fix a policy ρ. Fix a pair (q, p) ∈ [0, 1] × [0, fαv̄]. Let P u denote the inverse-

demand function in the left panel of Figure 2: P u(z) = v̄ if z 6 q, and P u(z) = qp/z

if z > q. Let x = maxq′6q ρ(q
′, p′) be the highest revenue among all (q′, p′) in the

dark-gray area, and y = maxq′>q,q′p′6qp ρ(q
′, p′) be the highest revenue among all (q′, p′)

in the light-gray area.

y

x

P

0 1

v̄

q

p

z

qp

z

z

P u

0 1q′′

v̄

p′′

P

z

P o

Figure 2: Inverse-demand functions P u and P o in the proof of Theorem 3.1

We discuss three cases which vary depending on the values of x and y.

Case 1: max{x, y} 6 qfαv̄. If the firm has a fixed cost of qfαv̄ and its inverse-demand

function is P u, then it is a firm’s best response not to produce. Regret equals distortion

which equals the maximal total surplus:

RGRT = DSTR = qv̄ +

∫ 1

q

qp

z
dz − qfαv̄ = q(1− fα)v̄ − qp log q.

Case 2: max{x, y} > qfαv̄ and x > y. If the firm’s inverse-demand function is P u

and its cost is zero, then the firm produces at most q and its profit is x > qfαv̄. Regret

is:

RGRT > (1− α)qfαv̄ +DSTR > (1− α)qfαv̄ +

∫ 1

q

qp

z
dz = q(1− fα)v̄ − qp log q.
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Case 3: max{x, y} > qfαv̄ and x 6 y. Let (q′′, p′′) be the maximizer in the definition

of y = maxq′>q,q′p′6qp ρ(q
′, p′). If the firm’s cost function is C(q) = y and its inverse-

demand function is P o as given by the right panel of Figure 2 (i.e., P o(z) = p′′ if z 6 q′′,

and P o(z) = 0 if z > q′′), then it is a firm’s best response to choose (q′′, p′′). Since the

fixed cost y exceeds the total consumer value q′′p′′ that the firm has created, the firm

overproduces. Regret equals distortion from overproduction:

RGRT = DSTR = y − q′′p′′ > qfαv̄ − qp = q(fαv̄ − p).

For any (q, p) ∈ [0, 1]× [0, fαv̄], one of these cases occurs. It follows that for any such

(q, p), the worst-case regret is at least min{q(1−fα)v̄−qp log q, q(fαv̄−p)}. Therefore,

the worst-case regret is at least rα. �

Let qα achieve the maximum in the definition of rα in (3). The explicit values of qα

and rα are given by:

qα =







1, if α 6 1
2
,

e1−
α+

√
α(α+4)

2 , if α > 1
2
;

rα = v̄











1−α
2−α

, if α 6 1
2
,

(

2+α−
√

α(α+4)
)

e1−
α+

√
α(α+4)
2

2(2−α)
, if α > 1

2
.

We depict the values of qα and rα in the left and middle panels of Figure 3.7

0 1

v̄

α
1
2

sα

0 1

v̄

α

v̄
2 rα

1
2

0 1

1

α

qα

1
2

Figure 3: Values of qα, rα, and sα

When the weight α on the firm’s profit is small enough (i.e., α 6 1/2), qα equals one,

so rα equals the lower bound (1−fα)v̄ in Claim 3. This shows that, when the regulator’s

redistribution objective is strong enough, his worst-case regret is pinned down by the

trade-off between protecting consumers’ surplus and mitigating underproduction. In

contrast, when α is large enough (i.e., α > 1/2), qα is smaller than one and rα is greater

than the lower bound in Claim 3. This shows that, when the redistribution objective

7For detailed calculations, see the online supplement.
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is not so strong or, equivalently, when the regulator’s main concern is efficiency, the

additional trade-off between under- and overproduction leads to a greater rα than the

lower bound in Claim 3.

3.2 Optimal policy

To illustrate our optimal policy and the intuition behind it, we begin with two polar

cases of the weight α: α = 0 and α = 1. We then extend the intuition from these two

cases to any weight between zero and one.

3.2.1 Optimal policy for α = 0 and that for α = 1

We first consider the case that α = 0. One unit of the firm’s profit translates into one

unit of regret. Compared to the cases in which α > 0, the regulator with α = 0 has

the strongest redistribution objective and thus the strongest incentive to constrain the

firm’s revenue. We next show that it is optimal to cap the firm’s average revenue at

f0v̄ = v̄/2.

Claim 4 (Optimal policy for α = 0). Assume that α = 0. The policy

ρ(q, p) = min{qf0v̄, qp} = min {qv̄/2, qp} (4)

achieves the worst-case regret r0 = v̄/2.

Both Claim 4 and Claim 5 follow from Theorem 3.2, so we omit their proofs.

When the market price is p, the regulator learns that among consumers that are

served, each values the firm’s product at least p. The regulator uses this informa-

tion by setting the firm’s average revenue to be min{v̄/2, p}. Under this policy, the

firm’s inverse-demand function is effectively min{v̄/2, P (q)}. The firm chooses (q, p)

to maximize its profit subject to this inverse-demand function and its cost function C.

Since the firm’s marginal revenue at any q is at most P (q), it will not overproduce.

In contrast, capping the firm’s average revenue may induce underproduction, as is ev-

ident from the right panel of Figure 1. The optimal cap is v̄/2 because distortion from

underproduction and the firm’s profit are equally undesirable for the regulator with

α = 0.

Policy (4) can be implemented by imposing a price cap at v̄/2. The corresponding

15



price-cap policy is:

ρ(q, p) =







qp, if p 6 v̄/2,

−∞, if p > v̄/2.
(5)

These two policies are equivalent in the sense that (i) (q, p) is a best response under

policy (4) if and only if (q,min{p, v̄/2}) is a best response under policy (5), and (ii)

these two responses induce the same profit for the firm and the same consumers’ surplus

under the two respective policies. The price-cap policy is especially appealing for

applications where it is easier to regulate the price than to tax the firm. We discuss

more the price-cap implementation in subsections 3.2.2 and 3.3.

We next consider the case that α = 1. The firm’s profit causes no regret, so

the regulator’s sole concern is efficiency. If the regulator knew the inverse-demand

function P , he would equate the firm’s revenue with the total consumer value that it

has created (e.g., Baron and Myerson (1982)). This policy would perfectly align the

firm’s incentives with the regulator’s, so no distortion or regret would occur. However,

when the regulator does not know P , he is uncertain how much total consumer value

the firm has created; he knows only that this value is at least qp and at most qv̄ if the

firm chooses (q, p). Offering less revenue than the total consumer value that the firm

has created may cause underproduction, but offering more may cause overproduction.

For small enough q, the regulator offers the upper bound qv̄ since he is more concerned

about underproduction for small quantities. He then imposes a cap on the total subsidy

which limits potential overproduction.

Claim 5 (Optimal policy for α = 1). Assume that α = 1. The policy

ρ(q, p) = min{qf1v̄, qp+ r1} = min {qv̄, qp+ r1}

achieves the worst-case regret r1.

Under this policy, given an inverse-demand function P , there exists a threshold

quantity q̂(P ) ∈ (0, 1] such that the cap on the total subsidy starts binding for q > q̂(P ).

Formally, q̂(P ) = max{q ∈ [0, 1] : qv̄ 6 qP (q) + r1}. The firm’s revenue is qv̄ if it

chooses q 6 q̂(P ), and is qP (q) + r1 if it chooses q > q̂(P ). The higher the inverse-

demand function P is, the larger the threshold quantity q̂(P ) is.

How does this policy constrain regret from both under- and overproduction? The

piece-rate subsidy lifts the firm’s marginal revenue to v̄ for any q 6 q̂(P ), which is

weakly higher than the consumer value P (q) at q. Therefore, the subsidy encourages
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production if it is efficient to produce more, at least until the cap on the total subsidy

starts binding. On the other hand, the policy caps the total subsidy to the firm at

r1. Since distortion from overproduction is at most the total subsidy, regret from

overproduction is also at most r1.

3.2.2 Optimal policy for α ∈ [0, 1]

We now characterize an optimal policy for any α ∈ [0, 1].

Theorem 3.2 (Optimal policy for 0 6 α 6 1). Let

sα = (sup{q(fαv̄ − p) : q(1− fα)v̄ − qp log q > rα, (q, p) ∈ [0, 1]× [0, fαv̄]})+ . (6)

For every s ∈ [sα, rα], the policy

ρ(q, p) = min{qfαv̄, qp+ s} (7)

achieves the worst-case regret rα.

Policy (7) uses the same instruments as in the two polar cases for the same intuition.

First, the firm’s average revenue is capped at fαv̄. This caps how much consumers’

surplus the firm can extract, and therefore caps the regulator’s regret from the firm’s

profit. Second, if the firm prices below fαv̄, the policy offers a piece-rate subsidy

which lifts the firm’s average revenue to fαv̄ for small enough quantities. The subsidy

encourages the firm to serve more consumers than just those with high values, so it

prevents severe underproduction. Third, the total subsidy to the firm is capped at

some level s, so regret from overproduction is also at most s.

As the weight α on the firm’s profit increases from zero to one, the value of fαv̄

increases from v̄/2 to v̄. This shows that, as the regulator’s redistribution objective

weakens, he is less willing to constrain the firm’s average revenue.

According to (6), sα is the maximal regret from overproduction that the regulator

must face if he wants to keep regret from underproduction and the firm’s profit under

rα. Hence, the cap s on the total subsidy is at least sα. On the other hand, the cap

s cannot exceed rα, since otherwise regret from overproduction may exceed rα. We

depict the value of sα in the right panel of Figure 3. For α < 1/2, sα = αfαv̄ < rα,

and for α > 1/2, sα = rα. Thus, there is freedom in choosing the cap s for α < 1/2

but no freedom for α > 1/2. This contrast reflects again the idea that for small

α, the worst-case regret rα is pinned down only by the trade-off between protecting
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consumers’ surplus and mitigating underproduction, while for large α the additional

trade-off between under- and overproduction is crucial in pinning down rα.

Policy (7) caps the firm’s average revenue at fαv̄. As in the case of α = 0, this cap

on average revenue can be implemented by imposing a price cap at fαv̄. The price-cap

implementation corresponds to the following policy:

ρ(q, p) =







min{qfαv̄, qp+ s}, with s ∈ [sα, rα], if p 6 fαv̄,

−∞, if p > fαv̄.
(8)

The optimal policy in Theorem 3.2 features three properties. First, the firm’s

average revenue is capped at fαv̄. Second, if sα > 0, then for some quantity-price

pair, the total subsidy to the firm is at least sα. Third, the total subsidy to the firm

is at most rα. Not every optimal policy has the same form as policy (7) does, but

Theorem 3.3 asserts that every optimal policy has similar properties. Recall that qα

achieves the maximum in the definition of rα in (3).

Theorem 3.3 (Properties of any optimal policy). Let ρ be an optimal policy. Then,

1. (Cap on average revenue): ρ(q, p) 6 qfαv̄ for every q 6 qα.

2. (Subsidy): If sα > 0, then there exists some (q, p) such that ρ(q, p) > qp+ sα.

3. (Cap on total subsidy): ρ(q, p) 6 qp+ rα for every (q, p).

In particular, since qα = 1 for α 6 1/2, it follows from Theorem 3.3 that for α 6 1/2

the firm’s average revenue is capped at fαv̄ for every quantity q ∈ [0, 1].

3.3 When does the firm clear the market?

In this subsection, we discuss whether and when the firm wants to clear the market.

First, the optimal policy (7) is weakly increasing in price p, so if (q, p) is a best

response of the firm under this policy, then (q, P (q)) is also a best response. This shows

that under policy (7), the firm always has a best response which clears the market.

Second, we have shown that the cap on average revenue can be implemented by

imposing a price cap. The price-cap implementation (8) is no longer weakly increasing

in p, so under this policy the firm may not have a best response which clears the

market. For instance, suppose that α = 0 and that the regulator imposes a price cap

at v̄/2. Suppose also that the firm’s inverse-demand function is P (q) = v̄ and its cost

function is C(q) = v̄q2/2. The firm’s best response is (q, p) = (1/2, v̄/2), which cannot

clear the market.
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Third, a common assumption in the monopoly-regulation literature is that the firm

has decreasing average cost. We next show that, if we assume decreasing average cost,

then even under the price-cap implementation (8) the firm has a best response which

clears the market.

Proposition 3.1. Assume that C(q)/q decreases in q for q > 0. Then under policy

(8), the firm has a best response which clears the market.

Proof. Let (q, p) be a firm’s best response to its (P,C) under policy (8). Since policy (8)

is increasing in p for p 6 fαv̄, we can assume without loss that p = P (q) or p = fαv̄

(since otherwise we can replace p by min{P (q), fαv̄}). In the former case, (q, P (q))

clears the market. In the latter case, let q′ > q be the maximal quantity that the firm

can sell at price fαv̄. Then since ρ(q′, fαv̄) = q′fαv̄ and ρ(q, fαv̄) = qfαv̄, we get that:

FP(ρ, P, C, q′, fαv̄) = q′
(

fαv̄ −
C(q′)

q′

)

> q′
(

fαv̄ −
C(q)

q

)

=
q′

q
FP(ρ, P, C, q, fαv̄) > FP(ρ, P, C, q, fαv̄),

where the first inequality follows from decreasing average cost. Therefore (q′, fαv̄) is

also a best response and clears the market by the definition of q′.

�

4 Regulatory policies in practice

Our results offer a number of insights and implications for the practical design of

regulatory policies.

First, we show that the minimax-regret criterion selects a price-cap policy as opti-

mal if the regulator cares only about consumers’ surplus (i.e., if α = 0). In subsection

5.1.2, we extend this result by showing that a price-cap policy is optimal if consumers

are sufficiently homogeneous or if the weight α on the firm’s profit is small enough.

Price-cap regulation was first developed in the 1980s and has since been applied in many

industries and locations (e.g., Cowan (2002) and Sappington and Weisman (2010)). A

usual rationale is that the policy is simple to implement and provides strong incentives

for the firm to cut costs (e.g., Armstrong and Sappington (2007)). By formalizing the

regret-minimizing property of the price-cap policy, we provide an additional explana-

tion for why this policy is widespread in practice.
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Second, we recommend a piece-rate subsidy up to a target level to mitigate un-

derproduction in less competitive markets. One such policy is the feed-in tariff in the

renewable energy sector, which takes the form of a guaranteed price above the market

price. The purpose is to encourage investment that otherwise may not take place.

In 2008, a report by the European Commission concluded that “well-adapted feed-in

tariff regimes are generally the most efficient and effective support schemes for pro-

moting renewable electricity” (European Union: European Commission (2008, p. 3)).

By early 2010, at least fifty countries had feed-in tariffs (REN21 (2010)). Our analysis

provides a theoretical foundation for feed-in tariffs, while also highlighting the risk of

overproduction due to such a policy. This risk was exemplified by Spain’s solar-market

experience around 2007-2009. Its feed-in tariff invited a flood of investment and a tariff

payment as high as $26.4 billion, which led to taxpayer backlash and suspension of the

tariffs (Voosen (2009)). Our result suggests that a cap on the total subsidy should have

been imposed to prevent excessive overproduction. Such a cap is similar in spirit to

Germany’s practice “to reduce tariff rates if its capacity targets were exceeded” (Voosen

(2009)).

Third, although we assume a monopolistic firm in a product market, our analysis

can be useful for other markets in which considerable monopoly or monopsony power is

present (due to market concentration or other frictions like search cost). One possible

application is the labor market, as a growing body of empirical studies has shown that

labor market monopsony is pervasive.8 In Appendix C, we show how to recast our

model to model labor market monopsony. The optimal policy in Theorem 3.2 has an

immediate interpretation as a mix of a minimum wage and a wage subsidy (or earned

income tax credit (EITC)).9 In particular, wage subsidies or EITC can make up the

difference between a worker’s reservation wage and the minimum wage paid by the firm,

so they can encourage more employment than at the monopsony level. Our intuition

resonates with the observation in Naidu and Posner (2022) that the minimum wage can

“restrain firms’ wage-setting power” and that wage subsidies can “rectify inefficiencies”

(Naidu and Posner (2022, p. S285)). Our results thus provide a theoretical foundation

for these policy tools.

8Most recent contributions include Dube, Giuliano and Leonard (2019), Dube et al. (2020), Dube,
Manning and Naidu (2020), Bassier, Dube and Naidu (2022).

9We thank Suresh Naidu for suggesting this labor market interpretation of our optimal policy.
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5 Incorporating additional knowledge

In our baseline model in section 2, the only assumptions we made on the inverse-

demand and cost functions were monotonicity, semicontinuity, and an upper bound

v̄ on the consumers’ values. We view this minimally-informed regulator as a natural

starting point. In some applications, the regulator may know more than this. We can

incorporate the regulator’s knowledge by restricting the set of inverse-demand and cost

functions in his problem.

Let E be the set of possible inverse-demand and cost functions. The regulator

chooses a policy ρ that minimizes the worst-case regret over all (P,C) ∈ E and all of

the firm’s best responses (q, p) to (P,C) under ρ:

minimize
ρ

max
(P,C)∈E,(q,p)

RGRT(ρ, P, C, q, p).

We now solve the regulator’s problem for some specific E and thus demonstrate the

adaptability of the minimax-regret approach.

5.1 Additional knowledge about demand

The regulator may know more specific upper and lower bounds on the inverse-demand

function P than in the baseline model. Let P , P : [0, 1] → R+ be two decreasing upper-

semicontinuous functions such that P (z) 6 P (z) for every z ∈ [0, 1]. Suppose that the

regulator knows that P is bounded from below and above by P and P , respectively.

Hence, E = {(P,C) : P (z) 6 P (z) 6 P (z) for z ∈ [0, 1]}. We let V (q) and V (q) denote

the lower and upper bounds on the total consumer value of quantity q:

V (q) =

∫ q

0

P (z) dz, V (q) =

∫ q

0

P (z) dz.

In this subsection, we characterize an optimal policy for any given bounds
(

P, P
)

on

P . Figure 4 gives an example of such bounds. Our baseline model corresponds to the

case in which P ≡ 0 and P ≡ v̄ > 0. In Baron and Myerson (1982), the regulator

knows P as the firm does, which corresponds to the case in which P = P = P .

If the firm chooses (q, p), it provides evidence to the regulator that P (q) > p. The

regulator also knows that P > P , so the total consumer value that the firm has created

is at least :

Θ(q, p) =

∫ q

0

max {P (z), p} dz.
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Figure 4: Total consumer value the firm has created is above Θ(q, p) and below V (q)

On the other hand, the regulator knows that P 6 P , so the total consumer value that

the firm has created is at most V (q). We illustrate the value of Θ(q, p) in the left panel

of Figure 4 and that of V (q) in the right panel. In our baseline model, Θ(q, p) equals

the market revenue qp since P ≡ 0, and V (q) equals qv̄ since P ≡ v̄.

We now adjust policy (7) in Theorem 3.2 to incorporate the bounds
(

P , P
)

on P .

We replace qv̄ and qp with the more general terms of V (q) and Θ(q, p), respectively.

Theorem 5.1 (Optimal policy given bounds
(

P , P
)

). Assume that P 6 P 6 P . Let

d(q) = max06z6q

(

V (z)− fαV (z)
)

, so d(q) is an increasing function and d(0) = 0.

There exists [sα, s̄α] ⊂ R+ such that for every s ∈ [sα, s̄α] the policy:

ρ(q, p) = min
{

fαV (q),Θ(q, p) + s− d(q)
}

(9)

achieves the minimal worst-case regret.

Theorem 5.1 follows from Theorem A.1 in appendix A, which further characterizes

the value of the minimal worst-case regret as well as the values of sα and s̄α. The proof

is also relegated to appendix A.

Policy (9) has a form similar to that of policy (7) for a similar intuition. The

firm’s revenue is at most a fraction fα of the maximal total consumer value V (q)

that it could have created. This cap on the firm’s revenue keeps the regret from

the firm’s profit under control. Subject to this cap, the firm’s revenue is the total

consumer value Θ(q, p) that the firm proves it has created, plus an amount (s− d(q)).

The amount (s− d(q)) is designed to keep the regret from both underproduction and

overproduction under control. This amount weakly decreases in q, reflecting the idea

that the regulator is more concerned about underproduction for small q, and more

concerned about overproduction for large q.

Policy (9) differs from policy (7) in that it includes an additional term (−d(q)).
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This term equals zero in our baseline model since P ≡ 0. The term has bite in markets

where P (z) is very close to P (z) for small z’s but much smaller than P (z) for large z’s.

Recall that, for any z ∈ [0, q], the zth consumer contributes at least P (z) to Θ(q, p).

When P (z) is very close to P (z) for small z’s, P (z) is higher than fαP (z). Under

policy (9), the firm cannot use such high values of P (z) as a justification for increasing

its marginal revenue for unit q > z, even though these high values of P (z) boost the

value of Θ(q, p) for q > z.10

Next, we apply Theorem 5.1 to two special cases. In subsection 5.1.1, the regulator

knows the inverse-demand function P . In subsection 5.1.2, both P and P are constant

functions.

5.1.1 The regulator knows the inverse-demand function: P = P = P

The assumption that P = P implies the equality that V (q) = V (q) for any q ∈ [0, 1].

Since V (q) 6 Θ(q, p) 6 V (q), this equality further implies that Θ(q, p) = V (q). It also

implies that d(q) = max06z6q

(

V (z)− fαV (z)
)

= (1 − fα)V (q). Substituting Θ(q, p)

and d(q) into the optimal policy (9), we can reduce the policy to:

ρ(q, p) = min
{

fαV (q),Θ(q, p) + s− d(q)
}

= min
{

fαV (q), fαV (q) + s
}

= fαV (q).

(10)

The firm’s revenue is a fixed fraction fα of the total consumer value V (q) that it has

created. Because the regulator knows P already, the firm’s price p provides no new

information about P and thus no new information about the total consumer value that

the firm has created. Hence, unlike in our baseline model, the firm’s revenue does not

depend on p. As the weight α goes from 0 to 1, the fraction fα goes from 1/2 to 1. If

fα equals one, the firm’s revenue equals the total consumer value that it has created,

so it will choose an efficient quantity.

Next, we argue that the firm never overproduces under the optimal policy (10).

Suppose otherwise that the firm chooses q even though it is more efficient to choose a

lower quantity q∗ < q. Since q∗ is more efficient than q, the total consumer value in

[q∗, q] is strictly lower than the additional cost from q∗ to q. Under policy (10), the

firm’s additional revenue from q∗ to q is just a fraction fα of the total consumer value

in [q∗, q], so it is strictly lower than the additional cost from q∗ to q. This contradicts

the presumption that choosing q is more profitable than choosing q∗. Hence, the firm

never overproduces.

10In the online supplement, we provide an example to illustrate this role of (−d(q)).
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This result stands in contrast to the possibility of overproduction in our baseline

model, suggesting that overproduction occurs only when the regulator is uncertain

about the demand. Intuitively, when the regulator is uncertain about P , he is uncertain

about how much total consumer value the firm has created. Thus, the optimal policy

may offer more revenue to the firm than the total consumer value and thereby cause

overproduction. Our results are consistent with what Baron and Myerson (1982) and

Armstrong (1999) find using Bayesian models. Baron and Myerson (1982) assume that

the regulator knows P . They also find that the firm never overproduces under the

optimal policy. Armstrong (1999) assumes that the regulator is uncertain about both

P and C. Using a four-type example, he shows that both over- and underproduction

occur under the optimal policy. Our results generalize these findings to settings in

which the firm’s private information is infinite-dimensional.

5.1.2 Both P and P are constant functions

Let P ≡ v̄ > 0 and P ≡ v ∈ [0, v̄]. If v = 0, we are back to the baseline model.

If v = v̄, the regulator knows that every consumer has value v̄. The ratio v/v̄ quan-

tifies the demand uncertainty faced by the regulator: the higher v/v̄ is, the smaller

the uncertainty. It can also be viewed as a measure of how homogeneous consumers

are. We next show that a price-cap policy is optimal when consumers are sufficiently

homogeneous.

Proposition 5.1 (Price cap optimality). If v/v̄ > fα = 1
2−α

, it is optimal to impose a

price cap at fαv̄.

Proof. Given that P ≡ v̄ and P ≡ v, it follows that V (q) = qv̄ and Θ(q, p) =

qmax{v, p}. Given that v > fαv̄, it follows that d(q) = q(v − fαv̄). The optimal

policy (9) reduces to:

ρ(q, p) = min {fαqv̄, qmax{v, p}+ s− q(v − fαv̄)} = qfαv̄, (11)

where the last equality follows from the fact that qmax{v, p}−q(v−fαv̄) > qv−q(v−
fαv̄) = qfαv̄ and that s > 0. We next show that policy (11) can be implemented by the

price-cap policy ρ∗(q, p): ρ∗(q, p) = qp if p 6 fαv̄ and ρ∗(q, p) = −∞ if p > fαv̄. First,

a best response (q, fαv̄) under ρ∗ is also a best response under policy (11), and this

(q, fαv̄) induces the same profit for the firm and the same consumers’ surplus under

both policies. Second, if (q, p) is a best response under policy (11), then (q, fαv̄) is a
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best response under ρ∗, and (q, fαv̄) induces the same profit and the same consumers’

surplus under ρ∗ as (q, p) does under policy (11). �

When v is sufficiently close to v̄, consumers with the highest values do not value

the product much more than consumers with the lowest values. In such a case, the

regulator is not concerned that the firm will serve just a small group of consumers

with very high values. Hence, he has no incentive to offer a subsidy to encourage more

production. Similarly, when α is small enough, the regulator’s redistribution objective

is sufficiently strong that he is not willing to subsidize the firm.

5.2 Additional knowledge about cost

The regulator may know that the firm has a fixed cost and a constant marginal cost,

but does not know the cost levels. Hence, E = {(P,C) : P (q) ∈ [0, v̄], C(q) = aq +

b for some a, b > 0}. This is the type of cost function used most frequently in studies

of monopoly regulation.

In our proof of Theorem 3.1, we show that the worst-case regret under any policy

is at least rα using only fixed-cost functions. This means that Theorem 3.1 remains

true for every set of cost functions that includes the set of all fixed-cost functions.

In particular, Theorem 3.1 remains true for E = {(P,C) : P (q) ∈ [0, v̄], C(q) =

aq + b for some a, b > 0}. Therefore, policy (7) in Theorem 3.2 remains optimal, since

the worst-case regret under policy (7) is at most rα for any (P,C) ∈ E .

Another natural restriction on the cost function is that the firm has decreasing

average cost, so E = {(P,C) : P (q) ∈ [0, v̄], C(q)/q decreases in q for q > 0}. Since

this set also includes the set of all fixed-cost functions, Theorems 3.1 and 3.2 remain

true for this E as well.

6 Conclusion

How to regulate a monopolistic firm when information asymmetries are pronounced

and multidimensional is an important and thus far underexplored topic (Armstrong

and Sappington (2007)). We study such a setting in which the regulator has very little

information about the firm’s demand and cost scenarios. The regulator looks for a

policy that works “fairly well” in all circumstances by minimizing his worst-case regret.

We show that the optimal policy features three instruments: (i) a cap on the firm’s

average revenue to protect consumers’ surplus, (ii) a piece-rate subsidy up to a target
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level to mitigate underproduction, and (iii) a cap on the total subsidy to limit potential

overproduction. When the consumers are sufficiently homogeneous or the regulator’s

redistributive objective is sufficiently strong, a cap on the firm’s average revenue is

sufficient, which can be implemented by a price-cap policy. Our result thus provides

another explanation for why price-cap policies are popular. By selecting a piece-rate

subsidy up to a target level as optimal, we provide a theoretical foundation for subsidy

programs like feed-in tariffs. Our analysis also highlights the risk of overproduction

under such programs, and thus emphasizes the importance of capping the total subsidy

to the firm.

The minimax-regret approach used in this paper could be useful for studying other

variants of the monopoly regulation problem. Here are a few examples. First, we have

assumed that there is no social cost of public funds. This assumption is not needed

when a price cap alone is optimal, but is needed when the optimal policy must involve

a subsidy. It will be useful to examine systematically how the cost of public funds

shapes the optimal policy. Second, we have taken the first steps in exploring how the

regulator’s additional knowledge affects the optimal policy. There might be markets

in which the regulator knows that the maximal total surplus is positive so production

is efficient; there might be markets in which the regulator has knowledge about the

levels of the firm’s fixed or marginal costs. It will be useful to explore how these

types of knowledge shape the optimal policy. Lastly, we have focused on settings in

which the firm chooses a uniform price. There are other settings in which the firm

can engage in price discrimination. Our analysis already provides a solution if the

firm can engage in first-degree price discrimination and charge each consumer their

value. In this case, the firm’s market revenue is exactly the total consumer value it

has created. This is as if the regulator knew the firm’s inverse-demand function P , so

policy (10) in subsection 5.1.1 is optimal. Our model can be modified to study the

regret-minimizing two-part tariffs. A natural starting point is that each consumer has a

(possibly different) inverse-demand function and that the regulator observes the firm’s

entry fee, its per-unit charge, and the total quantity sold. We leave these questions for

future research.

A Bounds
(

P , P
)

on the inverse-demand function P

Theorem A.1 below characterizes the value of the minimal worst-case regret and an

optimal policy for the environment E = {(P,C) : P (z) 6 P (z) 6 P (z) for z ∈ [0, 1]}
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in subsection 5.1. Theorems 3.1 and 3.2 follow as a special case.

For every q and v > V (q), let

ψv(q) = max
{

P (q) 6 p 6 P (q) : Θ(q, p) 6 v
}

be such that if the firm sells q units at price p 6 ψv(q), then the total consumer value

that the firm has created might be below v.

Theorem A.1 (General bounds
(

P , P
)

on P ). Assume that P (z) 6 P (z) 6 P (z), ∀z ∈
[0, 1]. Let D = max06z61

(

V (z)− fαV (z)
)

and D = max06z61

(

V (z)− αfαV (z)
)

. For

(q, v, c, q′′) such that 0 6 q 6 q′′ 6 1, v > V (q′′), and c > 0, let

ru(q, v, c, q
′′) = (1− fα)V (q) +

∫ q′′

q

ψv(z) dz − c, and

ro(q, v, c, q
′′) = fαV (q)− v + c+D.

1. Let Rα denote the optimal value of the following Problem (12):

maximize
(q, v, c, q′′)

min {ru(q, v, c, q′′), ro(q, v, c, q′′)}

subject to 0 6 q 6 q′′ 6 1, v > V (q′′), and c > 0.

(12)

The worst-case regret under any policy is at least Rα.

2. Let

sα =
(

sup
{

fαV (q)− v + c+D : ru(q, v, c, q
′′) > Rα

})+
, and

s̄α = Rα +D −D.

Then sα 6 s̄α, and for every s ∈ [sα, s̄α] the policy

ρ(q, p) = min
{

fαV (q),Θ(q, p) + s− d(q)
}

(13)

achieves the worst-case regret Rα.

Roughly speaking, the term ru(q, v, c, q
′′) represents regret from underproduction

and the firm’s profit, and ro(q, v, c, q
′′) represents regret from overproduction. In the

expression of ru, q is the firm’s quantity, v is the total consumer value that the firm

proves it has created, q′′ is an efficient quantity in the case of underproduction, and c

is the additional cost from q to q′′.
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Problem (12) is a finite constrained optimization problem. We next show that

Problem (12) admits an optimal solution with c = 0 and q′′ = 1.

Claim 6. 1. The optimal value Rα of Problem (12) is at least (1− fα)V (1).

2. There exists an optimal solution to Problem (12) such that c = 0 and q′′ = 1.

Proof. Denote a feasible point of Problem (12) by (q, v, c, q′′).

1. Let µ = (1, V (1), 0, 1), which is a feasible point. Then ru(µ) = (1 − fα)V (1) and

ro(µ) = fαV (1) − V (1) + D > (1 − α)fαV (1) = (1 − fα)V (1), since D > V (1) −
αfαV (1). Therefore Rα > min{ru(µ), ro(µ)} = (1− fα)V (1), as desired.

2. Let ν = (q, v, c, q′′) be a feasible point of Problem (12). Then the point ν̃ =

(q,max{v, V (1)}, c + V (1) − V (q′′), 1) is also feasible. Moreover, ru(ν) 6 ru(ν̃)

and ro(ν) 6 ro(ν̃). Therefore, we can assume that the optimal solution has q′′ = 1.

To show that there exists an optimal solution with c = 0, we start with some

optimal solution ν = (q, v, c, 1) and let q̃ = max{q 6 z 6 1 : c > fα(V (z)− V (q))}
and c̃ = c − fα

(

V (q̃)− V (q)
)

. Then ν̃ = (q̃, v, c̃, 1) is another feasible point with

ru(ν̃) > ru(ν) and ro(ν̃) = ro(ν). Therefore ν̃ is also an optimal solution with either

c̃ = 0, which is what we wanted, or q̃ = 1. If q̃ = 1, then the optimal value Rα is at

most (1− fα)V (1). This, combined with part 1, implies that Rα = (1− fα)V (1), so

µ = (1, V (1), 0, 1) is also an optimal solution.

�

A.1 The case that P ≡ 0 and P ≡ v̄

We now show that Theorems 3.1 and 3.2 follow from Theorem A.1 for the case that

P ≡ 0 and P ≡ v̄. Indeed, in this case, (i) Θ(q, p) is the market revenue qp, and V (q)

is qv̄, (ii) V ≡ 0, D = D = 0, and d ≡ 0, and (iii) the function ψv(z) is:

ψv(z) =







v̄, if z 6 v/v̄,

v/z, if z > v/v̄.

It follows that for q ∈ [0, 1] and v ∈ [0, qfαv̄]:

ru(q, v, 0, 1) = (1− fα)qv̄ +

∫ 1

q

ψv(z) dz = q(1− fα)v̄ − v log q, and

ro(q, v, 0, 1) = qfαv̄ − v.
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Also, any (q, v, 0, 1) with v > qfαv̄ cannot be an optimal solution to Problem (12)

because ro(q, v, 0, 1) = qfαv̄ − v < 0 for such (q, v, 0, 1). Therefore, by Claim 6,

Problem (12) reduces to the lower bound in Theorem 3.1 with v = qp, so Rα = rα.

Moreover, the optimal policy (13) reduces to (7). The value of s̄α is Rα, and (using the

arguments in Claim 6 again) the value of sα reduces to the value of sα in Theorem 3.2.

A.2 Proof of lower bound

In this section we show that the worst-case regret under any policy is at least the

optimal value Rα of Problem (12). The argument is the same as in the proof of

Theorem 3.1, with an additional complication that did not appear in the case in which

P ≡ 0. We will show that the function ψv plays the same role as the function P u does

in the proof of Theorem 3.1. Claim 7 is the counterpart of Claim 3 for general bounds
(

P, P
)

on P . For a policy ρ, let WCR(ρ) be the worst-case regret under ρ.

Claim 7. For every policy ρ, it holds that WCR(ρ) > (1− fα)V (1).

Proof. Fix a policy ρ. Let k = max(q,p) ρ(q, p) be the highest revenue that the firm can

get under ρ. We separate to two cases.

1. If k > fαV (1) then, if the inverse-demand function is P and the cost is 0, the firm’s

profit is k and RGRT > (1− α)k > (1− α)fαV (1) = (1− fα)V (1).

2. If k < fαV (1) then, if the inverse-demand function is P and there is a fixed cost of

fαV (1), the firm does not produce. In this case, RGRT = DSTR = (1− fα)V (1).

�

Let (q, v, c, q′′) = (q, v, 0, 1) be an optimal solution to (12) as in Claim 6. Abusing

notations, let

ru = ru(q, v, 0, 1) = (1− fα)V (q) +

∫ 1

q

ψv(z) dz, and

ro = ro(q, v, 0, 1) = fαV (q)− v +D.

Fix a policy ρ. We need to show that Rα = min {ru, ro} 6 WCR(ρ).

Let q′ be such that D = V (q′)− αfαV (q′). Assume first that q 6 q′. Then

ro 6 fαV (q)− V (1) + V (q′)− αfαV (q
′) 6 (1− α)fαV (q

′) 6 (1− fα)V (1) 6 WCR(ρ),

where the first inequality follows from v > V (1), the second from q′ > q and q′ 6 1,

the third from q′ 6 1 and (1− α)fα = 1− fα, and the fourth from Claim 7.
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We now assume q′ < q. Let Uq,v be the inverse-demand function such that Uq,v(z) =

P (z) for z 6 q and Uq,v(z) = ψv(z) for q < z 6 1. Let

x = max
z6q,p6P (z)

ρ(z, p), y = max
z>q,Θ(z,p)6v

ρ(z, p), and w = max
z6q′,p6P (z)

ρ(z, p).

Assume the inverse-demand function is Uq,v. Then x is the highest revenue that the firm

can get by producing at most q, y is the highest revenue that it can get by producing

at least q, and w the highest revenue that it can get by producing at most q′.

We separate to four (comprehensive, non-exclusive) cases:

1. If x, y 6 fαV (q) then consider the inverse-demand function Uq,v with fixed cost

fαV (q). The firm will not produce, with FP = 0 and RGRT = DSTR = (1 −
fα)V (q) +

∫ 1

q
ψv(z) dz = ru from underproduction.

2. If x > fαV (q) and y 6 x then consider the inverse-demand function Uq,v with cost

0. The firm will produce at most q units, with FP = x and DSTR >
∫ 1

q
ψv(z) dz

from underproduction. Therefore again RGRT > ru.

3. If y > max
{

fαV (q′), w
}

+ fα
(

V (q)− V (q′)
)

and y > x. Let (q̃, p̃) achieve the

maximum in the definition of y, so that Θ(q̃, p̃) 6 v and ρ(q̃, p̃) = y. Consider the

inverse-demand function W that is given by:

W (z) =



















P (z), if z 6 q′,

max {P (z), p̃} , if q′ < z 6 q̃,

P (z) if z > q̃.

and the cost function such that producing q′ units is costless and producing addi-

tional units incurs a fixed cost of y−w. If the firm produces q′ units, it creates the

total surplus of V (q′). However, the highest profit the firm can get by producing at

most q′ units is w, and therefore the firm will produce q̃ units and sell them at price

p̃ with FP = w. The additional value to consumers created by producing the extra

units is given by

∫ q̃

q′
W (z) dz =

∫ q̃

q′
max {P (z), p̃} dz = Θ(q̃, p̃)−Θ(q′, p̃) 6 Θ(q̃, p̃)−V (q′) 6 v−V (q′).

Let ∆ be the difference between the additional cost and this additional value to
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consumers. Then

∆ > y − w − v + V (q′) > ro − (1− α)fαV (q′) + (fαV (q
′)− w)+ (14)

We now separate to two cases:

(3.1) If ∆ 6 0, then ro 6 (1−α)fαV (q
′) = (1− fα)V (q′) 6 WCR(ρ), where the first

inequality follows from (14) and the second from Claim 7.

(3.2) If ∆ > 0 then the firm overproduces, with DSTR = ∆ and FP = w and

therefore, from (14), RGRT = (1 − α)w + ∆ > ro + (1 − α)(w − fαV (q
′)) +

(fαV (q′)− w)+ > ro.

Once we exclude these three cases, we are left with the case that fαV (q) 6 y 6

max
{

fαV (q
′), w

}

+ fα
(

V (q)− V (q′)
)

and y > x, which is a subset of the following

case.

4. If w > fαV (q′) and x, y 6 w+ fα
(

V (q)− V (q′)
)

, then consider the inverse-demand

function Uq,v with cost such that producing q′ units is costless and producing addi-

tional units incurs a fixed cost of fα
(

V (q)− V (q′)
)

. The firm produces at most q′

units, with FP = w, and DSTR > (1−fα)
(

V (q)− V (q′)
)

+
∫ 1

q
ψv(z) dz from under-

production. RGRT > (1− α)fαV (q′) + (1− fα)
(

V (q)− V (q′)
)

+
∫ 1

q
ψv(z) dz = ru.

A.3 Proof of optimality

In this section we prove the second part of Theorem A.1. We first show that sα 6 s̄α.

The inequality follows from the following two observations:

1. From the definitions of D and D in Theorem A.1, it follows that:

D−D 6 max
06z61

(

fαV (z)− αfαV (z)
)

= max
06z61

(1−α)fαV (z) = (1−α)fαV (1) 6 Rα,

where the last inequality follows from Claim 6. Therefore s̄α = Rα +D−D > 0.

2. For every (q, v, c, q′′) such that ru(q, v, c, q
′′) > Rα, it follows from the definition

of Rα in Theorem A.1 that fαV (q)− v + c+D = ro(q, v, c, q
′′) 6 Rα. Therefore,

s̄α = Rα +D −D > fαV (q)− v + c+D.

These two observations imply that:

s̄α >
(

sup
{

fαV (q)− v + c+D : ru(q, v, c, q
′′) > Rα

})+
= sα.

Let s ∈ [sα, s̄α] and let ρ be the policy (13). Fix an inverse-demand function P and
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a cost function C. We need to show that RGRT 6 Rα, where Rα is the optimal value

of Problem (12). Since ρ(q, p) increases in p, we can assume that the firm sets its price

at P (q) and receives revenue ρ̃(q) = min{fαV (q),Θ(q, P (q)) + s− d(q)}.

A.3.1 Efficient production

If the firm’s quantity q is efficient, then

RGRT = (1− α)FP 6 (1− α)ρ̃(q) 6 (1− α)fαV (q) 6 (1− α)fαV (1) 6 Rα

where the last inequality follows from Claim 6.

A.3.2 Underproduction

Assume that the firm underproduces at quantity q, and let q′′ > q be the minimal

efficient quantity above q. Let q∗ = max{z ∈ [q, q′′] : ρ̃(z) = fαV (z)} with the

maximum defined to be q if this set is empty. Let c = C(q′′)− C(q) be the additional

cost from q to q′′. Then DSTR =
∫ q′′

q
P (z) dz − c 6 V (q∗) − V (q) +

∫ q′′

q∗
P (z) dz − c.

Since FP 6 ρ̃(q) 6 fαV (q), it follows that:

RGRT = (1− α)FP + DSTR 6 (1− fα)V (q∗)− c∗ +

∫ q′′

q∗
P (z) dz (15)

where c∗ = c − fα(V (q∗) − V (q)). We argue that c∗ > 0. Indeed, if q∗ = q, then

c∗ = c > 0; if q∗ > q, since the firm weakly prefers to choose q with revenue at most

fαV (q) over choosing q∗ with revenue fαV (q
∗) and paying an additional cost at most

c, it follows that c > fα(V (q
∗)− V (q)).

We separate to two cases:

1. If q∗ = q′′, then RGRT 6 (1− fα)V (q∗)− c∗ 6 (1− fα)V (1) 6 Rα by Claim 6.

2. If q∗ < q′′, let v = sup{Θ(z, P (z)) : z ∈ (q∗, q′′]}. Then P (z) 6 ψv(z) for every

z ∈ (q∗, q′′] by the definition of ψv. Therefore, from (15),

RGRT 6 (1− fα)V (q∗)− c∗ +

∫ q′′

q∗
ψv(z) dz = ru(q

∗, v, c∗, q′′).

For every z ∈ (q∗, q′′] such that Θ(z, P (z)) > V (q′′) the firm could have chosen

quantity z with revenue ρ̃(z) = Θ(z, P (z)) + s− d(z), but chooses not to. It follows
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that fαV (q) > Θ(z, P (z)) + s− d(z)− c, which implies that:

s 6 fαV (q)−Θ(z, P (z)) + c + d(z) 6 fαV (q)−Θ(z, P (z)) + c+D

= fαV (q
∗)−Θ(z, P (z)) + c∗ +D.

For every q∗ < k < z we must have V (q∗) < V (k), otherwise q∗ will also be

efficient, contradicting q∗ < q′′. Therefore s < fαV (k)−Θ(z, P (z)) + c∗ +D. Since

s > sα, this implies, by the definition of sα, that ru(k,Θ(z, P (z)), c∗, q′′) 6 Rα.

Taking the limit with k ↓ q∗ it follows that ru(q
∗,Θ(z, P (z)), c∗, q′′) 6 Rα. Since

v = sup{Θ(z, P (z)) : z ∈ (q∗, q′′]}, this implies that RGRT 6 ru(q
∗, v, c∗, q′′) 6 Rα,

as desired.

A.3.3 Overproduction

Assume that the firm overproduces at quantity q, and let q′′ < q be the maximal

efficient quantity below q. Let p = P (q). Let c = C(q)− C(q′′) be the additional cost

from q′′ to q. Since q maximizes the firm’s profit, it follows that c 6 ρ̃(q)− ρ̃(q′′). Then

DSTR = c−
∫ q

q′′
P (z) dz 6 ρ̃(q)− ρ̃(q′′)−

∫ q

q′′
P (z) dz.

Since we assume that DSTR > 0, it follows that:

ρ̃(q′′) < ρ̃(q)−
∫ q

q′′
P (z) dz 6 Θ(q, p) + s− d(q)−

∫ q

q′′
P (z) dz 6 Θ(q′′, p) + s− d(q′′),

because d(q′′) 6 d(q) and Θ(q, p) 6 Θ(q′′, p)+
∫ q

q′′
P (z) dz as P (z) > max {p, P (z)} for

z ∈ [q′′, q]. Therefore, by the definition of ρ̃, it must be the case that ρ̃(q′′) = fαV (q′′).

The firm’s revenue is ρ̃(q) and its cost is at least c, so its profit is at most ρ̃(q)− c.

Therefore:

RGRT = (1− α)FP + DSTR 6 (1− α)(ρ̃(q)− c) + c−
∫ q

q′′
P (z) dz 6

ρ̃(q)− αρ̃(q′′)−
∫ q

q′′
P (z) dz = ρ̃(q)− αfαV (q′′)−

∫ q

q′′
P (z) dz, (16)

where the second inequality follows from c 6 ρ̃(q)− ρ̃(q′′).

Let q∗ = max{0 6 z 6 q′′ : P (z) > p} with the maximum defined to be 0 if

P (0) < p. We separate to two cases:
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1. If p(q′′ − q∗) 6 αfα(V (q′′)− V (q∗)) then since

ρ̃(q) 6 s+Θ(q, p)−d(q) = s+V (q∗)+ p(q′′− q∗)+

∫ q

q′′
max {p, P (z)} dz−d(q) 6

s+ V (q∗) + p(q′′ − q∗)− d(q) +

∫ q

q′′
P (z) dz,

we get from (16) and using the assumption p(q′′ − q∗) 6 αfα(V (q′′)− V (q∗)) that

RGRT 6 s− αfαV (q
∗) + V (q∗)− d(q). (17)

Let d(q) = max06z6q

(

V (z)− αfαV (z)
)

. Then d − d is increasing and d(1) = D.

From (17) we get

RGRT 6 s+ d(q)− d(q) 6 s +D −D 6 Rα

since s 6 s̄α.

2. If p(q′′ − q∗) > αfα(V (q
′′)− V (q∗)) then it must be the case that q∗ < q′′. Because

V is concave (since P is decreasing), we have that
∫ q

q′′
P (z) dz > p(q − q′′) >

αfα(V (q)− V (q′′)). Therefore from (16) and from ρ̃(q) 6 fαV (q) it follows that

RGRT 6 (1− α)fαV (q) = (1− fα)V (q) 6 Rα

from Claim 6.

B Proof of Theorem 3.3

The proof is based on a refined argument of the proof of Theorem 3.1. For every (q, p),

we define two inverse-demand functions P u
q,p and P o

q,p: (i) P u
q,p(z) = v̄ if z 6 q and

P u
q,p(z) = qp/z if z > q; and (ii) P o

q,p(z) = p if z 6 q and P o
q,p(z) = 0 if z > q. We depict

P u
q,p and P o

q,p in Figure 5. The function P u
q,p exhibits unitary price elasticity when the

price is in the range of [qp, p]. Similar functions have appeared in Roesler and Szentes

(2017) and Condorelli and Szentes (2020, 2022).

Fix a policy ρ. Let ρ̄(q) = maxq′6q ρ(q
′, p′) be the highest revenue the firm can get

from producing at most q. Let ρ̂(q, p) = maxq′>q,q′p′6qp ρ(q
′, p′) be the highest revenue

if the firm produces at least q and its market revenue is at most qp. As shown in the

left panel of Figure 5, ρ̄(q) is the maximum of ρ in the light-gray area, and ρ̂(q, p) is
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the maximum of ρ in the dark-gray area.

ρ̄(q)

ρ̂(q, p)

0 1q

v̄

p

P o
q,p(z)

z

P u
q,p(z)

0 1

v̄

q

p

z

qp

z

z

Figure 5: Inverse-demand functions P u
q,p and P o

q,p, and definitions of ρ̄(q) and ρ̂(q, p)

Claim 8 shows that WCR(ρ) is at least the subsidy that policy ρ offers.

Claim 8. Fix a policy ρ. Then WCR(ρ) > ρ(q, p)− qp for every (q, p).

Proof. If ρ(q, p) 6 qp, the assertion follows from the fact that regret is nonnegative.

Now suppose that ρ(q, p) > qp. If the firm has a fixed cost of ρ(q, p) and its inverse-

demand is P o
q,p, it is a firm’s best response to produce, so the firm incurs the fixed cost

of ρ(q, p). Distortion is at least ρ(q, p)− qp due to overproduction, so regret is at least

ρ(q, p)− qp. �

Claim 9 shows that, if the firm does not receive enough additional revenue from

producing more, there is sizable regret due to underproduction.

Claim 9. Fix a policy ρ. Let q 6 q ∈ [0, 1] and p ∈ [0, v̄]. If ρ̂(q, p) 6 ρ̄
(

q
)

+
(

q − q
)

fαv̄, then

WCR(ρ) > (1− α)(ρ̄
(

q
)

+
(

q − q
)

fαv̄)− qp log q.

Proof. 1. If ρ̄(q)− ρ̄
(

q
)

6
(

q − q
)

fαv̄, then consider the inverse-demand function P u
q,p

and a cost function such that producing q or fewer units is costless and producing

additional units incurs a fixed cost of
(

q − q
)

fαv̄. The firm will produce at most q

units, with FP = ρ̄
(

q
)

and

DSTR >
(

q − q
)

(v̄ − fαv̄)− qp log q = (1− α)
(

q − q
)

fαv̄ − qp log q,

because of underproduction. Therefore,

RGRT = (1− α)FP + DSTR > (1− α)(ρ̄
(

q
)

+
(

q − q
)

fαv̄)− qp log q.
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2. If ρ̄(q)−ρ̄
(

q
)

>
(

q − q
)

fαv̄, then consider the inverse-demand function P u
q,p and zero

cost. The firm will produce at most q units, with FP = ρ̄(q) > ρ̄
(

q
)

+
(

q − q
)

fαv̄,

and DSTR > −qp log q because of underproduction. Therefore,

RGRT = (1− α)FP + DSTR > (1− α)
(

ρ̄
(

q
)

+
(

q − q
)

fαv̄
)

− qp log q.

�

Combining Claims 8 and 9, we show that the regulator suffers sizable regret from

either underproduction or overproduction.

Claim 10. Fix a policy ρ. Let q 6 q ∈ [0, 1] and p ∈ [0, v̄]. Then

WCR(ρ) > min
{

(1− α)(ρ̄
(

q
)

+
(

q − q
)

fαv̄)− qp log q, ρ̄
(

q
)

+
(

q − q
)

fαv̄ − qp
}

.

Proof. If ρ̂(q, p) > ρ̄
(

q
)

+
(

q − q
)

fαv̄, then let (q′, p′) be such that q′ > q, q′p′ 6 qp and

ρ(q′, p′) = ρ̂(q, p). By Claim 8, WCR(ρ) > ρ(q′, p′)− q′p′ > ρ̄
(

q
)

+
(

q − q
)

fαv̄ − qp.

If ρ̂(q, p) < ρ̄
(

q
)

+
(

q − q
)

fαv̄, then WCR(ρ) > (1−α)(ρ̄
(

q
)

+
(

q − q
)

fαv̄)−qp log q
by Claim 9. �

Proof of Theorem 3.3. 1. Let (qα, pα) achieve the maximum in the definition of rα

in (3). Assume that ρ(q, p) > qfαv̄ for some q 6 qα and some p. Then ρ̄
(

q
)

> qfαv̄,

and therefore ρ̄
(

q
)

+ (qα − q)fαv̄ > qαfαv̄. Therefore, by Claim 10 with q = qα and

p = pα, it follows that WCR(ρ) is at least:

min
{

(1− α)(ρ̄
(

q
)

+ (qα − q)fαv̄)− qαpα log qα, ρ̄
(

q
)

+ (qα − q)fαv̄ − qαpα
}

> min {(1− α)qαfαv̄ − qαpα log qα, qα(fαv̄ − pα)} = rα.

2. Suppose that ρ(q, p) < qp + sα for every q, p. This implies that maxq′,p′(ρ(q
′, p′) −

p′q′) < sα. Given the definition of sα in (6), there exists some q ∈ [0, 1], p ∈ [0, fαv̄]

such that (1 − α)qfαv̄ − qp log q > rα and q(fαv̄ − p) > maxq′,p′(ρ(q
′, p′) − p′q′).

This second inequality, combined with the relation that maxq′,p′(ρ(q
′, p′) − p′q′) >

maxq′>q,q′p′6qp(ρ(q
′, p′)−p′q′) > ρ̂(q, p)−qp, implies that ρ̂(q, p) < qfαv̄. By Claim 9

with q = 0, we get that WCR(ρ) > rα.

3. Suppose that ρ(q, p) > qp+ rα for some q, p. Then WCR(ρ) > rα by Claim 8.

�
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C Labor market monopsony

Let R : [0, 1] → R with R(0) = 0 be the employer’s revenue function, so her revenue

from hiring q workers is R(q). Let L : [0, 1] → R be an increasing labor supply curve,

with L(q) being the reservation wage of the qth worker. The employer knows (L,R)

but the regulator does not know (L,R). The employer chooses both the number of

workers to hire and the wage paid to those hired. A employment-wage pair (q, w) is

feasible if and only if w > L(q).

According to a regulatory policy η, if the employer chooses (q, w), then she pays the

total amount of η(q, w). If η(q, w) > qw, then the employer pays a tax of η(q, w)− qw,

which goes to the workers. If η(q, w) < qw, then the employer receives a subsidy of

qw− η(q, w), which is paid for by the workers. The timing is as follows. The regulator

publicly chooses and commits to a policy η. The employer privately observes (L,R).

She then publicly chooses (q, w) and pays the total amount of η(q, w).

Fix a policy η and a pair of (L,R) functions. If the employer chooses (q, w), then

workers’ surplus and the employer’s profit are given by:

WS(η, L, q, w) = η(q, w)−
∫ q

0

L(z) dz, and EP(η, L,R, q, w) = R(q)− η(q, w).

The regulator knows that L(q) 6 L(q) 6 L(q) and that R′(q) 6 R̂. The regulator’s

payoff is WS+ αEP.

C.1 Reduction to the monopoly environment

Let C(q) = R̂q−R(q). Then C(q) is an arbitrary increasing and nonnegative function

with C(0) = 0. It satisfies decreasing average cost if R(q) satisfies increasing average

revenue (that is, if R(q)/q is increasing for q > 0).

Let P (q) = R̂ − L(q). Then P (q) is decreasing. The regulator knows that P (q) 6

P (q) 6 P (q) with P (q) = R̂ − L(q) and P (q) = R̂ − L(q). A price p in the monopoly

environment corresponds to a wage w = R̂ − p in the monopsony environment. A

policy ρ in the monopoly environment corresponds to a policy η in the monopsony

environment by the relation that ρ(q, p) = R̂q − η(q, w).

Under these definitions, (i) (q, p) is feasible in the monopoly environment if and only

if (q, w) is feasible in the monopsony environment, (ii) CS(ρ, P, q, p) = WS(η, L, q, w),

and (iii) FP(ρ, P, C, q, p) = EP(η, L,R, q, w). Therefore, the regulator’s problems in

the monopoly and monopsony environments are equivalent, so we can apply Theorem
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A.1 to solve for the optimal η(q, w).

C.2 Reduction to the baseline model in Section 2

The case that L and L are constant functions corresponds to the case that P and P

are constant functions. In particular, L(q) ≡ ℓ and L(q) ≡ ℓ corresponds to P ≡ R̂− ℓ

and P ≡ R̂− ℓ. If we let ℓ = R̂ and ℓ = R̂− v̄, then P ≡ v̄ and P ≡ 0, so we can derive

an optimal η from policy (7). For every s ∈ [sα, rα], the following policy is optimal:

η(q, w) = R̂q − ρ(q, p) = R̂q −min{qfαv̄, qp+ s}
= max{R̂q − qfαv̄, R̂q − qp− s} = max{q((1− fα)R̂ + fαℓ), qw − s}.

This policy uses three instruments. First, the employer’s average wage payment,

η(q, w)/q, is at least ((1 − fα)R̂ + fαℓ). This caps how much workers’ surplus the

employer can extract. Second, if the wage is above ((1− fα)R̂+ fαℓ), the policy offers

a piece-rate subsidy which lowers the average wage payment to ((1 − fα)R̂ + fαℓ) for

sufficiently low employment level q. This subsidy prevents severe underemployment.

Third, the total subsidy is at most s, so regret from overemployment is at most s.

For α = 0, sα = 0, so it is optimal to choose η(q, w) = max{q(R̂ + ℓ)/2, qw}. This

policy can be implemented by imposing a minimum wage at (R̂+ℓ)/2. The intuition is

similar to that in the monopoly environment: R̂ is the highest possible value a worker

can generate for the employer, and ℓ is the lowest possible reservation wage. The

minimum wage is halfway between R̂ and ℓ in order to balance regret from inefficient

underemployment and that from extracted workers’ surplus.
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