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Abstract

A seller of an indivisible good designs a selling mechanism for a buyer who

knows privately the distribution of his value for the good (his type) but not the

realization of his value. The seller also controls how much information about

the realized value the buyer is allowed to learn privately. In a model of two

types with an increasing likelihood ratio, we show that under some regularity

conditions the disclosure policy in an optimal mechanism has a nested interval

structure: the high type is allowed to learn whether his value is above the seller’s

cost, while the low type is allowed to learn whether his value is in an interval

above the cost. Information discrimination is in general necessary in an optimal

mechanism.
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1 Introduction

In many bilateral trade environments with one-sided incomplete information, the in-

formed party (say the buyer) is endowed with some private information about the

underlying state of the potential trade, but his initial private information is often in-

complete and he can learn additional information over time. In these environments,

however, the buyer’s access to the additional information may be controlled by the

uninformed party (say the seller). Examples include the seller designing product trials,

restricting the nature and the number of tests that the buyer can carry out, and man-

aging the buyer’s access to data. How should the seller design the information policy

together with the selling mechanism?

Recent advancement in information technologies has made it easier to compute and

refine personalized prices, and at the same time has also enhanced dissemination of

personalized information to potential buyers. Interactions between price discrimination

and information discrimination in mechanism design are a new theoretical issue that we

study in this paper. In particular, do optimal mechanisms generally require information

discrimination?

Answering these questions is potentially important for businesses who can provide

customized data access to their customers, especially in environments where discrimi-

natory disclosure may face regulatory or legal challenges.1 Moreover, a better under-

standing the interaction between price discrimination and information discrimination

can help regulatory authorities enact better policies to protect consumers.

We adapt the framework of sequential screening (Courty and Li (2000)) to study

the issue of information disclosure. The buyer’s type represents his initial private in-

formation regarding from which distribution his value for the seller’s product is drawn.

There are two types, and we assume that the value distribution of the “high type”

dominates in likelihood ratio order that of the “low type.” The seller also controls an

additional signal about the buyer’s value that she can disclose without observing its

realization. The seller chooses a menu of experiments, one for each type, and a menu

of option contracts, each consisting of an advance payment and a strike price. The

advance payment here can be interpreted as the price for both the call option and the

access to the additional information controlled by the seller.

1For example, in financial markets, the 2000 Regulation Fair Disclosure (Reg FD) prohibits the
disclosure of nonpublic, material information to selected parties to ensure investors have a fair access
to information. In practice, however, security brokers often help their premium customers arrange
one-to-one meeting with firm managers by hosting private “non-deal roadshows (NDRs)” (see for
example, Bradley, Jame, and Williams (2021)). NDRs are costly to arrange and the information
shared during private meetings may be material, in violation of Reg FD.
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We assume that all information about the underlying state except the buyer’s ex

ante type is under the seller’s control. Hence, the additional signal controlled by the

seller is correlated with the buyer’s type. Our main characterization is that, under some

regularity conditions, the optimal discriminatory disclosure policy is a pair of partitions

of the value support with a nested interval structure. More precisely, each buyer type

is recommended to buy if the realized value lies inside some interval, without knowing

the exact realization, and is otherwise recommended not to buy, again without knowing

the exact realization. Furthermore, the “buy intervals” for the two types are nested:

the low type’s buy interval is a subset of the high type’s buy interval. The partitioning

for the high type is efficient in the sense that the buy interval includes all realized

values higher than the seller’s cost (reservation value), and is therefore monotone. The

partitioning for the low type is inefficient in that the buy interval lies above the the

seller’s cost, and more interestingly, can be non-monotone. Depending on the level of

likelihood ratio at the top, the buy interval of the low type may exclude an interval

of highest realized values. Intuitively, if the likelihood ratio of the two distributions is

sufficiently high for an interval of highest values, excluding these realizations from the

low type’s buy interval may significantly reduce the high type’s information rent with

little sacrifice on the trading surplus with the low type. This is because the deviating

high type would have gained most from buying at these realizations which occur with

high probability for the high type but with low probability for the low type.

In the original sequential screening model (Courty and Li (2000)), there is only price

discrimination because the buyer privately learns his value after the seller commits to a

mechanism. Some features of the optimal mechanism from Courty and Li (2000) remain

in the present model with both price and information discrimination.2 In particular,

there is no allocation distortion at the top, meaning that the high type buys the good

whenever his realized value is above the seller’s cost, and only downward distortion at

the bottom, in that the low type never buys when his value is below a cutoff that is

strictly higher than the cost. With information discrimination in this paper, the high

type is allowed to have the necessary information for the efficient allocation, but the

information disclosed to the low type leads to a different form of downward distortion

when the partition is non-monotone: the low type is also prevented from buying when

his value is above the buy interval. This is impossible in Courty and Li (2000), where

incentive compatibility after the buyer learns his realized value requires allocation

2Courty and Li (2000) studies both first order and second order stochastic dominance ranking
of value distributions by type. In this paper, we assume likelihood ratio dominance ranking, which
implies first order stochastic dominance ranking.
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monotonicity, but in the present paper this is used to reduce the information rent for

the high type.

The interaction between information and price discriminations makes it necessary to

adapt the standard approach to mechanism design, and one contribution of this paper

is to show how to do it. In contrast to Courty and Li (2000), here with endogenous

information structure the individual rationality condition for the high type in general

does not follow from the incentive compatibility constraint of the high type and the

individual rationality constraint of the low type. We provide “regularity conditions” on

the primitives of the mechanism design problem for any optimal information disclosure

to allow the high type to buy the good with a greater probability after a deviation

than the truthful low type. This ensures that the individual rationality constraint of

the high type can be dropped in a suitably relaxed problem.

To answer the question of whether optimal mechanisms require information dis-

crimination, we study whether the same profit achieved by the optimal discriminatory

disclosure policy can be replicated by a non-discriminatory disclosure policy, generated

by the coarsest common refinement of the pair of partitions. The buyer is now given

the same information regardless of his type report, and the critical question is whether

the high type’s incentives would remain the same as under discriminatory disclosure,

especially after lying about his type (off-path). Due to the nested-interval structure,

the answer is “yes” when the partition for the low type is monotone. However, when

the partition is non-monotone, the answer is “no” because the high type may profit

from disobeying recommendation after misreporting as the low type. We provide an

analytical example that this is indeed the case, and information discrimination is nec-

essary.

The rest of the paper is organized as follows. We conclude the Introduction by dis-

cussing related papers in the existing literature. Section 2 sets up the model. Section

3 characterizes the optimal mechanism including the disclosure policy. Section 4 dis-

cusses how our analysis may be extended to settings where the information controlled

by the seller is independent of the buyer’s type and to settings where price discrimina-

tion is not possible. Section 5 offers some suggestions about future research directions

in mechanism design with endogenous information structures.

1.1 Related literature

Our paper belongs to the literature of private information disclosure where the real-

ization of the seller’s signal is privately observable to the buyer but not to the seller.
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The idea of private disclosure was first introduced by Lewis and Sappington (1994) to

the mechanism design literature.3

The joint design problem of information policy and pricing scheme has been previ-

ously investigated by a number of papers. Bergemann and Pesendorfer (2007) consider

an auction setting without ex ante private information and show that, if the seller

cannot charge fee for information, the optimal disclosure in an optimal auction must

assign asymmetric partitions to ex ante homogeneous buyers. If buyers have ex ante

private information and the seller can charge fee for information, Eső and Szentes

(2007) show that full disclosure is optimal when the seller is restricted to disclosing

only the orthogonal component of the seller’s information, that is, the part of seller’s

information that is independent of the buyers’ private information.4

Li and Shi (2017) consider a bilateral trade setting similar to the one in Eső and

Szentes (2007), but allow the seller to directly garble the information under her control.

Their goal is to show that full disclosure is then generally suboptimal.5 In particular,

they show that monotone binary partitions of the true value dominate full disclosure in

terms of the seller’s revenue, by limiting the buyer’s additional private information to

only whether his true value is above or below some partition threshold, instead of al-

lowing him to learn the exact value as under full disclosure. They do not solve the joint

design problem of information policy and pricing scheme in their setup. Moreover, even

though the disclosure policy with monotone binary partitions they use to establish the

sub-optimality of full disclosure is discriminatory, this does not imply that information

discrimination is necessary for profit maximization. Therefore, our research questions

of optimal disclosure policy and of the necessity of information discrimination remain

open.

This paper aims to address these two open questions in the same setting of Li and

Shi (2017), except that the buyer’s type is assumed to be binary. We show that the

optimal disclosure policy consists of a pair of intervals, which nests as a special case

the monotone binary partitions that Li and Shi (2017) use to show the sub-optimality

of full disclosure. Although effective in both creating trade surplus and extracting

3See also an earlier contribution by Kamien, Tauman, and Zamir (1990). Subsequent literature on
static private disclosure includes Che (1996), Ganuza (2004), Johnson and Myatt (2006), and Ganuza
and Penalva (2010).

4Hoffmann and Inderst (2011) and Bergemann and Wambach (2015) also consider information
disclosure in the sequential screening setting, but they focus on the case where the information released
by the seller is independent of the buyer’s private information. See also Lu, Ye, and Feng (2021) for a
related analysis of how a seller can use a two-stage mechanism to induce bidders to acquire additional
information.

5Krähmer and Strausz (2015) show that the irrelevance theorem in Eső and Szentes (2007) fails if
the buyer’s type is discrete. They present an example in which full disclosure is not optimal.
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information rent, a monotone partition for the low type can be too informative for

the deviating high type, generating a large information rent. Therefore, non-monotone

partitioning in the form of intervals may be needed for profit maximizing when the

likelihood ratios are large for the highest values.6

This paper also extends the profit equivalence between discriminatory and non-

discriminatory disclosure with independent information in Eső and Szentes (2007) to

a setting with binary types (see Section 4). But this equivalence breaks down if the

buyer’s participation constraint is posterior rather than interim. Wei and Green (2020)

consider a similar design problem with independent information, but assume that the

buyer’s payoff must be non-negative for every type and every signal realization. The

non-negative payoff restriction rules out advance payment and hence the optimal selling

mechanism takes the form of type-dependent posted prices. They show that informa-

tion discrimination and price discrimination are complements and optimal mechanism

must feature both. In other words, the profit attained by optimal mechanism with

discriminatory disclosure cannot be replicated by non-discriminatory disclosure.7

The issue of (non-)equivalence between discriminatory and non-discriminatory dis-

closure has been investigated in the literature of Bayesian persuasion. If the receiver’s

type is independent of the sender’s information, Kolotilin, Mylovanov, Zapechelnyuk,

and Li (2017) show that, for any incentive compatible discriminatory disclosure policy,

there is a non-discriminatory disclosure policy that yields the same interim payoff for

both parties. In other words, incentive compatibility alone implies equivalence. If the

receiver’s type is correlated with the sender’s information, however, Guo and Shmaya

(2019) show that equivalence does not follow from incentive compatibility but optimal-

ity does imply equivalence. That is, the sender-optimal discriminatory disclosure can

be implemented as a non-discriminatory disclosure.

As in Guo and Shmaya (2019), our seller’s signal is correlated with the buyer’s

type. Different from Guo and Shmaya (2019), our seller can use prices, in additional

to information, to discriminate against different buyer types, and moreover, her goal is

6Krähmer (2020) considers a design setting similar to ours and allows the seller to secretly ran-
domize information structures via a secret randomization device. He shows that, if the contract can
be made contingent on the seller’s randomization outcome, then the seller can use a scheme similar
to Crémer and McLean (1988) to extract the full surplus. Zhu (2017) studies a similar problem in a
multi-agent setting and shows that an individually uninformative but aggregately revealing disclosure
policy can extract full surplus. Transfers are not needed in his construction. Such randomization of
information structures and contracting technology are not allowed in our paper.

7Smolin (2020) considers a model where the buyer’s value is a weighted average of the value of
several product attributes. He shows that it is without loss to consider linear disclosure which reveals
whether a weighted value of attributes is above some threshold, and that the optimal menu may be
non-discriminatory.
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to maximize profit rather than the expected purchase probability. We have shown that

equivalence fails in general if price discrimination is possible. If price discrimination is

impossible – different buyer types must receive the same pricing scheme, we show that

optimality implies equivalence as in Guo and Shmaya (2019) if the gain from trade

is certain. If the gain from the trade is uncertain, we show in Section 4 through an

example that optimal disclosure policy may not be a pair of nested intervals and that

information discrimination is necessary to obtain the maximal profit.

2 The Model

A risk-neutral seller (she) has a product for sale to a risk-neutral buyer (he). The

buyer’s value for the product is ω, which is drawn from Ω = [ω, ω] and is initially

unknown to both players. The buyer has private information about his value, which

we refer to as his type. Let θ denote the buyer’s type and assume a binary type space

θ ∈ {H,L}, with ϕH and ϕL = 1 − ϕH being the probabilities of type H and type L

respectively. Let Fθ(·) be the cumulative distribution function of the buyer’s value ω

conditional on θ. We assume that Fθ(·) has a positive and finite density fθ(·), and that

H stochastically dominates L in likelihood ratio order, i.e., fH (ω) /fL (ω) is weakly

increasing for all ω. We denote by µθ the mean of Fθ (·), i.e., µθ =
∫ ω

ω
ω dFθ(ω). If

the buyer chooses not to participate in the seller’s mechanism, he gets a payoff of zero

regardless of his type. The seller’s production cost (reservation value for the product)

is known to be c, with c < ω.

For simplicity, we assume that all information of the buyer about ω except his

ex ante type θ is under the seller’s control. That is, the buyer may not acquire any

additional private information about ω on his own.

The seller can commit to a menu of two contracts, one for each type. Each contract

consists of a pricing scheme and an information policy. A pricing scheme (aθ, pθ) ∈
R+ × R consists of an advance payment aθ and a strike price pθ.8 A type-θ buyer

transfers the advance payment aθ to the seller before he is allowed to receive additional

private information about ω, and has the option to buy the product at the strike price

pθ after he receives the additional information. Instead of an advancement payment and

a strike price, we can alternatively model a pricing scheme as a deposit and a refund.

The only restriction we have imposed is that pricing schemes are deterministic.9

8We use superscripts for reported types and subscripts for true types.
9See Section 5 for a brief discussion on this restriction.
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An information policy for type θ is an experiment on Ω. Each experiment is a map-

ping from Ω to a set of outcomes. Since the pricing scheme for type θ is deterministic,

it is without loss to model the experiment for θ as σθ : Ω → ∆({buy, don’t-buy})
where the outcome space {buy, don’t-buy} is binary.10 Further, without loss we can

restrict to contracts that are obedient in the sense that for a buyer who reports his type

truthfully, he purchases the product when learning that the outcome is buy and does

not purchase after learning that the outcome is don’t-buy. Given that the outcome

space is binary, with a slight abuse of notation, we denote the experiment for type θ

as σθ : Ω → [0, 1], with σθ(ω) representing the probability of the buy outcome for a

truthful buyer type θ conditional on signal realization ω. A seller’s disclosure policy

is a pair of information policies
(
σL, σH

)
, and a disclosure policy is discriminatory if

information policies differ cross buyer types: σL ̸= σH .

An experiment may be thought of as a product trial or a pilot program for type

θ. The seller designs the trial length and chooses which aspects of the product are

available for trial to control how much type θ privately learns about ω. There are

only two possible trial outcomes, “buy” and “don’t-buy.” Type θ does not learn the

realization of the signal z, only whether or not the seller recommends a truthful type

θ to purchase the product. The advance payment aθ can be interpreted as the price

for both the trial and the option to purchase the product at the strike price pθ.

The timing of the game is as follows. The seller first commits to a menu of contracts(
aθ, pθ, σθ

)
, one for each type. The buyer then chooses one contract

(
aθ, pθ, σθ

)
from

the menu and pays the advance payment aθ. Finally, the buyer learns additional

information about ω through experiment σθ, and decides whether to buy at the given

strike price pθ.

We conclude the model description by introducing several terminologies on the

information policy. An information policy σθ : Ω → [0, 1] is partitional if σθ(ω) is either

0 or 1. A partition σθ has an interval structure if there is an interval [k, k] ⊆ [ω, ω]

such that σθ(ω) = 1{ω ∈ [k, k]}, where 1{·} is the indicator function, and we refer to

[k, k] as the buy interval for type θ. A partition σθ(·) with an interval structure [k, k]

is monotone if k = ω, and is non-monotone if k < ω.

An information policy σθ is a monotone (binary) partition if there is a threshold kθ

10To see this, suppose the experiment for type θ has more than two outcomes. Under a deterministic
pricing scheme, for every experiment outcome, a type-θ buyer can choose either to buy or not to buy
the product. If we pool all the outcomes after which type θ buys, and pool the outcomes after which
he does not buy, neither the payoff of type θ nor the seller’s profit is affected. Pooling however makes it
less attractive for the other type θ̃ to mimic type θ since type θ’s experiment becomes less informative.
Thus, we can restrict to experiments with the outcome space {buy,don’t-buy}.
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such that σθ(ω) = 1{ω ≥ kθ}. It is clear that, for any menu of option contracts with

full disclosure, if we replace full disclosure by monotone partitions with kθ = pθ while

keeping the option contracts unchanged, then equilibrium outcome and hence profit

remain the same. Li and Shi (2017) have shown that one can strictly increase profit by

further raising pθ and adjusting aθ accordingly to bind the relevant participation and

incentive constraints. We will show in this paper that non-monotone partitions may

do even better than monotone binary partitions.

3 Optimal Disclosure

The seller’s problem is to choose a pricing scheme (aθ, pθ) and an information policy

σθ : Ω → [0, 1] for each reported θ, to maximize her profit:

∑
θ=H,L

ϕθ

(
aθ +

(
pθ − c

) ∫ ω

ω

σθ(ω)fθ(ω)dω

)
, (1)

subject to: (i) two ex ante participation constraints,

− aθ +

∫ ω

ω

(ω − pθ)σθ(ω)fθ(ω)dω ⩾ 0, ∀θ; (IRθ)

(ii) two interim participation constraints, so each type is willing to buy after the “buy”

outcome and is willing to pass after the “don’t-buy” outcome:∫ ω

ω

(ω − pθ)σθ(ω)fθ(ω)dω ⩾ 0 ⩾
∫ ω

ω

(ω − pθ)(1− σθ(ω))fθ(ω)dω; ∀θ, (PBθ)

and (iii) two incentive compatibility constraints:

− aH +

∫ ω

ω

(ω − pH)σH(ω)fH(ω)dω

⩾ −aL +max

{∫ ω

ω

(ω − pL)σL(ω)fH(ω)dω,

∫ ω

ω

(ω − pL)fH(ω)dω

}
, (ICH)

− aL +

∫ ω

ω

(ω − pL)σL(ω)fL(ω)dω

⩾ −aH +max

{∫ ω

ω

(ω − pH)σH(ω)fL(ω)dω, 0

}
. (ICL)

In the statement of ICH constraint, we use the fact that, if the high type reports
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low, the most profitable deviation is either to buy after the “buy” outcome, or to buy

all the time. For ICL constraint, we use the fact that, if the low type reports high,

the most profitable deviation is either to buy after the “buy” outcome, or not to buy

at all. Here, it is easy to see that assuming aθ ⩾ 0 is without loss, since the buyer is

offered an option to buy at the price pθ. The value of this option is weakly positive.

To ease exposition, we introduce two more notations. For all θ, θ̃ = H,L, denote

the posterior estimate of a type θ buyer who reports θ̃ and then observes the “buy”

outcome as

vθ̃θ =

∫ ω

ω
ωσθ̃(ω)fθ(ω)dω∫ ω

ω
σθ̃(ω)fθ(ω)dω

.

Similarly, denote the posterior estimate of a type θ buyer who reports θ̃ and then

observes the “don’t-buy” outcome as

uθ̃
θ =

∫ ω

ω
ω
(
1− σθ̃(ω)

)
fθ(ω)dω∫ ω

ω

(
1− σθ̃(ω)

)
fθ(ω)dω

.

Under likelihood ratio dominance, we have vθH ≥ vθL and uθ
H ≥ uθ

L, for each θ = H,L.11

We can use these notations to rewrite the PBθ constraints as bounds on the strike

price:

vθθ ⩾ pθ ⩾ uθ
θ. (2)

3.1 Relaxed problem

In a dynamic mechanism design problem with exogenous information (e.g., Courty and

Li, 2000), the true value ω is revealed in period two, and the buyer reporting type θ

buys if and only if ω exceeds price pθ, both on and off the truthful reporting path. As

a result, under the weaker order of first-order stochastic dominance, IRH follows from

IRL and ICH , and this is used to show that IRL and ICH bind while ICL is satisfied.

In contrast, in the present optimal disclosure problem, the buyer’s value estimate in

period two depends on his true type and the assigned information policy through his

reported type. For IRH to follow from IRL and ICH , we need

max

{∫ ω

ω

(ω − pL)σL(ω)fH(ω)dω,

∫ ω

ω

(ω − pL)fH(ω)dω

}
≥

∫ ω

ω

(ω−pL)σL(ω)fL(ω)dω.

11This is because for each θ = H,L, the density function σθ(ω)fH(ω)/
∫ ω

ω
σθ(w)fH(w)dw dominates

in likelihood ratio order the density function σθ(ω)fL(ω)/
∫ ω

ω
σθ(w)fL(w)dw, implying vθH ≥ vθL; a

similar argument shows that uθ
H ≥ uθ

L.
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If uL
H ≤ pL so that in deviation type H buys only after receiving the “buy” outcome,

the above becomes ∫ ω

ω

(ω − pL)σL(ω)(fH(ω)− fL(ω))dω ≥ 0, (3)

which does not necessarily hold even under the stronger assumption of likelihood ratio

dominance. However, if ∫ ω

ω

σL(ω)(fH(ω)− fL(ω))dω ≥ 0, (4)

that is, if the information policy σL for type L is such that a true type L buyer buys

the good with a smaller probability than a deviating type H buyer, then (3) holds for

pL ≤ vLL. This is because (3) is equivalent to

(vLH − pL)

∫ ω

ω

σL(ω)fH(ω)dω ≥ (vLL − pL)

∫ ω

ω

σL(ω)fL(ω)dω,

which follows from (4) and vLH ≥ vLL. In particular, if σL is given by a monotone

partition and is therefore weakly increasing, then (4) holds, and thus IRH is implied

by IRL, ICH and PBL.

Following the standard approach to dynamic mechanism design problem with exoge-

nous information, we consider a “relaxed problem” by dropping ICL. Since information

policy σL is endogenously chosen and is not necessarily increasing, we have to retain

IRH . As in the standard relaxed problem, we first establish that any solution to the

relaxed problem has both IRL and ICH binding. The argument for why ICH is binding

is slightly complicated by the fact that we have retained IRH in the relaxed problem.

Lemma 1 At any solution to the relaxed problem, both IRL and ICH bind.

Proof. See appendix.

The next hurdle in analyzing our relaxed problem is that we need to deal with the

possibility of “double deviation” by type H: as already mentioned, a type H buyer who

deviates and reports L may buy at both signals. This is tackled in the result below.

We show that in characterizing the solution to the relaxed problem, we can restrict to

no double deviation by type H.

Lemma 2 At any solution to the relaxed problem, uL
H ≤ pL.

Proof. See appendix.
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The idea behind Lemma 2 is simple. If double deviation by type H occurs at the

solution to the relaxed problem, so that type H buys the good even after the “don’t-

buy” outcome after the first deviation of misreporting as type L, the information policy

for type L must be a monotone partition. But then double deviation by type H means

that type L strictly prefers to buy after the “buy” outcome. As a result, the seller

could raise the profit by increasing pL without violating IRH . A corollary of Lemma 2

is that uL
H ≤ vLL.

Combining Lemma 1 and Lemma 2, we can rewrite the objective (1) in the relaxed

problem as

ϕH

∫ ω

ω

(ω − c)σH(ω)fH(ω)dω

+

∫ ω

ω

(
ϕL (ω − c) fL(ω)− ϕH

(
ω − pL

)
(fH(ω)− fL(ω))

)
σL(ω)dω. (5)

By Lemma 2, IRH becomes (3). In choosing the two information policies σH and σL

and two strike prices pH and pL, the seller also faces the two PBH and PBL constraints,

and the constraint of no double deviation by type H

uL
H ≤ pL. (NDH)

Since uL
H ≥ uL

L and given constraint NDH , the only part of PBL constraints that still

remains to be considered is vLL ≥ pL.

Since we have dropped ICL in the relaxed problem, from the first integral in the

the objective function (5), we have that the solution in σH is “efficient,” given by

σH(ω) = 1{ω ≥ c}. The choice of the strike price pH for type H is indeterminate as it

does not appear in (5). However, it must satisfy PBH and, together with the advance

payment aH , keep the truth-telling payoff of type H at the same level given by ICH :

− aH +

∫ ω

c

(ω − pH)fH(ω)dω =

∫ ω

ω

(ω − pL)σL(ω)(fH(ω)− fL(ω))dω. (6)

Our next result establishes that there is a solution to the relaxed problem that

satisfies the dropped constraint of ICL, and is thus a solution to the original problem.12

12Since pH and aH are indeterminate given that σH(ω) = 1{ω ≥ c}, not all solutions to the relaxed
problem satisfy ICL. For example, if we set pH to the conditional expectation of type H’s value above
c, then the solution to the relaxed problem may have aH < 0, which clearly violates ICL because IRL

binds by Lemma 1.
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Lemma 3 Any solution to the relaxed problem such that pH ≤ vHL satisfies ICL.

Proof. See appendix.

The intuition behind the argument is simple. If a solution to the relaxed problem

has the property that a deviating type L will buy only after receiving the “buy”

outcome (e.g., with pH = c), and that ICL is not satisfied, then the seller’s profit

would be strictly higher under an efficient and non-discriminatory disclosure policy

with pH = pL = c and σH(ω) = σL(ω) = 1{ω ≥ c}. This of course contradicts the

assumption that we have found a solution to the relaxed problem. It follows from this

lemma that any solution to the relaxed problem with pH = c also solves the original

problem. Therefore, from now on, we will set pH = c.

We can now focus on the following “residual” relaxed problem, which is choosing

the information policy σL and the strike price pL for type L to maximize the second

integral in (5), or∫ ω

ω

(
ϕL (ω − c) fL(ω)− ϕH

(
ω − pL

)
(fH(ω)− fL(ω))

)
σL(ω)dω, (7)

subject to the IRH constraint (equation (3)) and the combined PBL and NDH con-

straints of

uL
H ≤ pL ≤ vLL. (8)

3.2 Optimal mechanisms

Li and Shi (2017) use monotone partitions to show that full disclosure is suboptimal in

general. Although monotone partitions can be effective in both creating trade surplus

and extracting information rent, the following example shows that a monotone partition

may not be optimal.

Example 1 Suppose that ϕL = ϕH = 1/2. and the seller’s reservation value c = 1/2.

Type L has a uniform value distribution over [0, 1]. The value distribution of type H

is also uniform except for an atom of size 1/4 at the top:

FH(ω) =

{
3
4
ω if ω ∈ [0, 1)

1 if ω = 1.

Consider the following disclosure policy and pricing schemes. For type H, choose

information policy σH(ω) = 1{ω ≥ c}, set strike price pH = c, and set advance
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payment aH = 7/32. For type L, choose σL(ω) = 1{ω ∈ (1/2, 1)}, set strike price

pL = 3/4, and charge advance payment aL = 0. Under this menu of contracts, type L

will not mimic type H, and he buys only upon observing the “buy” outcome and receives

zero expected payoff. A type H buyer will not mimic type L because, after deviation,

he buys only at the “buy” outcome and gets zero expected payoff since his posterior

estimate when observing the “buy” outcome is 3/4. The disclosure policy and pricing

schemes together extract the full surplus.

In Example 1, the atom in the value distribution of typeH means that the likelihood

ratio fH(ω)/fL(ω) explodes at the top. It is straightforward to show that, if the seller is

restricted to monotone partitions for type L, the optimal partition threshold is equal to

5/8, leaving an information rent of 3/128 to type H. If the seller is allowed to exclude

the top realization of ω = 1 from the low type’s buy interval (and hence the low type’s

information policy is no longer a monotone partition), she can cut the information

rent of type H to zero without incurring any loss in the trading surplus with type L,

because ω = 1 occurs with probability 1/4 for a misreporting type H while ω = 1

occurs with probability zero for type L. Indeed, the seller can extract the full surplus

by setting the low type’s buy interval as (1/2, 1).

Monotone partitions can be optimal with suitable upper bounds on the likelihood

ratio, as we show now. To simplify notation, we write the (point) likelihood ratio at

ω ∈ [ω, ω] as

λ(ω) =
fH(ω)

fL(ω)

and the average likelihood ratio over an interval [k1, k2] ⊆ [ω, ω] as

Λ(k1, k2) =
FH(k2)− FH(k1)

FL(k2)− FL(k1)
.

Proposition 1 Suppose that λ(ω) ≤ ϕL/ϕH and maxω λ
′(ω) ≤ 1/(ω−ω). The optimal

disclosure policy is a pair of monotone partitions.

Proof. We show that under the conditions stated in the proposition, the solution in

σL(·) to the relaxed problem is a two-step function, with σL(ω) = 1{ω ≥ k} for some k.

The objective is (7). We relax the problem further by dropping (3) and the constraint

uL
H ≤ pL. The remaining constraint pL ≤ vLL can be written as∫ ω

ω

(
ω − pL

)
σL(ω)fL(ω)dω ≥ 0.
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Let β ≥ 0 be the Lagrange multiplier associated with the above constraint and write

the Lagrangian as

L =

∫ ω

ω

(
ϕL (ω − c)− ϕH

(
ω − pL

)(fH(ω)

fL(ω)
− 1

)
+ β

(
ω − pL

))
σL(ω)fL(ω)dω.

Hence, the solution is σL(ω) = 1{Υ(ω) ≥ 0}, where

Υ(ω) = ϕL(ω − c) + (ω − pL) (ϕH (1− λ(ω)) + β) . (9)

From (9), for any fixed pL, using the two assumptions in the proposition and β ≥ 0,

we have

Υ′(ω) = ϕL + ϕH (1− λ(ω)) + β − ϕH(ω − pL)λ′(ω)

≥ ϕL + ϕH (1− ϕL/ϕH) + β − ϕH

∣∣ω − pL
∣∣ /(ω − ω)

= β + ϕH

(
1−

∣∣ω − pL
∣∣ /(ω − ω)

)
≥ 0

for all ω ∈ [ω, ω]. It follows that there exists some k such that σL(ω) = 1{ω ≥ k}.
Given that σ(·) is a monotone partition with a threshold k, the objective (7) is

increasing in pL for any k. Thus, we have pL = vLL. The dropped constraint of uL
H ≤ pL

is also satisfied, as uL
H < vLL. Finally, the solution to the relaxed problem satisfies (3)

because σL(·) is weakly increasing. The proposition then follows from Lemma 3.

Although the sufficient conditions stated in Proposition 1 are restrictive, we provide

an analytical example below to show how they can be satisfied. This example features

two linear density functions fH and fL over the unit interval.

Example 2 Let fL(ω) = 1 + (2ω − 1)tL and fH(ω) = 1 + (2ω − 1)tH for ω ∈ [0, 1],

with −1 ≤ tL < tH ≤ 1. We have

λ(ω) =
1 + tH
1 + tL

, max
ω∈[0,1]

λ′(ω) =
2(tH − tL)

(1− |tL|)2
.

Therefore, the sufficient conditions in Proposition 1 can be written as

tH ≤ tL +min

{
ϕL − ϕH

ϕH

(1 + tL) ,
1

2
(1− |tL|)2

}
.

As long as ϕL > ϕH , the right hand side of the above inequality is always strictly
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larger than tL. Therefore, for any tL > −1, there always exist values of tH that satisfy

this condition. However, for tL = −1 the condition can never hold because λ(ω) is

unbounded at ω = ω.

In Example 1, a monotone partition is not optimal for type L. Instead, type L

is recommended to buy if ω lies in the interval (1/2, 1) and not to buy otherwise,

and moreover, the interval (1/2, 1) is nested by the interval [1/2, 1] that type H is

recommended to buy. To answer the question of when a pair of such “nested intervals”

is optimal, we will focus on the “regular” case where condition (4) holds.

Definition 1 A solution to the residual relaxed problem is regular if condition (4) holds

and is irregular otherwise.

Whether a solution is regular or not depends only on the information policy σL

for type L in the solution. When the solution is regular, IRH is slack. This case is

closer to the classical sequential screening problem with exogenous information. If (4)

is strict, then since the residual objective function (7) increases with pL, the solution

must have pL = vLL; if (4) holds with an equality, setting pL = vLL gives another solution

to the residual relaxed problem. Moreover, pL ≥ c in any regular solution, because if

pL = vLL < c, then the value of the objective (7) is necessarily negative, as the trade

surplus from type L is negative while the rent to type H is non-negative.

We show that in any regular solution, the information policy σL is partitional,

the buy region is an interval [k, k] ⊂ [ω, ω], and the interval [k, k] is a subset of the

buy interval [c, ω] of type H. The optimal partition for the low type may be either

monotone (k = ω) or non-monotone (k < ω). In other words, a pair of monotone

parititions is a special case of a pair of nested intervals with k = ω. This “nested-

interval” characterization of optimal disclosure in regular solutions is presented in the

following lemma.

Lemma 4 At any regular solution, pL = vLL ≥ c. Furthermore, there exist k and k

satisfying c < k < k ≤ ω such that σL(ω) = 1{ω ∈ [k, k]}.

Proof. See appendix.

The proof of Lemma 4 in the appendix is based on a perturbation argument. If

the buy region of the low type in a regular solution is not an interval, we can perturb

σL marginally, keeping vLL and hence pL unchanged. The key is to show that there

is always a perturbation that increases the trade surplus from the low type, which is

the first term in (7), while simultaneously decreases the information rent to the high
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type, which is the second term in (7). The intuitive reason for the existence such

perturbations when the buy region of the low type is not an interval, can be obtained

from the same Lagrangian function in the proof of Proposition 1. If we drop NDH from

the residual relaxed problem and impose the single remaining constraint pL ≤ vLL, with

β ≥ 0 being the associated Lagrangian multiplier, then as in the proof of Proposition

1, the solution is σL(ω) = 1{Υ(ω) ≥ 0}, where Υ(ω) is given in (9). Given that pL ≥ c,

we have

Υ(pL) = ϕL(p
L − c) ≥ 0.

Further, Υ(ω) can cross 0 only once for all ω > pL. To see the latter claim, note that

for ω > pL, Υ(ω) has the same sign as

Υ(ω)

ω − pL
= ϕL

ω − c

ω − pL
+ ϕH (1− λ(ω)) + β.

The second term on the right-hand side of the above expression is decreasing in ω

by likelihood ratio dominance, while the first term is non-decreasing because pL ≥ c.

Therefore, Υ(ω) can cross 0 only once and only from above for all ω > pL. Similarly,

Υ(ω) can cross 0 only once and only from below for all ω < pL. It follows that there

exists an interval of values [k, k] ⊂ [ω, ω] such that Υ(ω) ≥ 0 if and only if ω ∈ [k, k].

In other words, σL(ω) = 1{ω ∈ [k, k]}.13

We are ready to present the main results in this section that establish the optimality

of nested intervals. We do so by providing sufficient conditions for the solution to be

regular. Since we cannot exploit the characterization of regular solutions given by

Lemma 4, in the first set of sufficient conditions we directly tackle the inequality (4),

using only the fact that the seller does not exclude the low type completely in an

optimal mechanism.

Proposition 2 If there exists γ > 0 such that λ(ω) ≥ 1 + γ(ω − c) for all ω ∈ [ω, ω],

then the optimal disclosure policy is a pair of nested intervals.

Proof. By assumptions in the proposition, we have∫ ω

ω

σL(ω)(fH(ω)− fL(ω))dω ≥ γ

∫ ω

ω

σL(ω)(ω − c)fL (ω) dω ≥ 0.

13If we assume that µH ≤ c, then it is never profitable for a deviating type H buyer to always buy.
The dropped NDH constraint is slack at any regular solution, and thus the above argument provides
an alternative proof for Lemma 4. The perturbation argument in the appendix is more general, and
covers both when NDH is slack and when it is binding.
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The last inequality follows because in any optimal solution the trade surplus with

type L – the first term in the residual objective function (7) – must be non-negative.

Otherwise, the seller can exclude type L altogether and be better off. Thus, condition

(4) for regular solutions holds. The proposition follows immediately from Lemma 4.

The sufficient condition in Proposition 2 is satisfied if we can identify some value

k ≤ c such that

λ(ω) ≥ 1 + γ(ω − k)

for some γ > 0. One candidate for such value is where the density functions fH and

fL intersect: by likelihood ratio dominance there exists a unique ωo ∈ (ω, ω) such that

fH(ωo) = fL(ωo), or λ(ωo) = 1. Note that the condition in Proposition 2 requires

ωo ≤ c. It is helpful to compare two increasing functions λ(ω) − 1 and ω − ωo for

ω ∈ [ω, ω]. Both functions pass 0 at ω = ωo. For there to exist γ > 0 such that

λ(ω) − 1 ≥ γ(ω − ωo), we must be able to “rotate” the function ω − ωo around ωo

such that it stays below λ(ω) − 1 for ω ∈ [ω, ω]. If λ(ω) is continuously differentiable

at ω = ωo, a necessary condition for this to happen is that λ(ω) is convex at ω = ωo.

Indeed, if λ(ω) is convex for all ω ∈ [ω, ω], the sufficient condition is satisfied by

setting γ = λ′(ω0). Example 2 can be used to illustrate that a convex likelihood

ratio function λ satisfies the sufficient condition in Proposition 2; it also illustrates

that convex likelihood functions are sufficient but not necessary for the condition in

Proposition 2.

Example 2 continued We have ωo = 1/2, and

λ(ω) =
1− tH + 2tHω

1− tL + 2tLω
.

It can be easily verified that

λ′′(ω) = − 8tL(tH − tL)

(1− tL + 2tLω)3
.

Therefore, λ(ω) is convex if tL ≤ 0 and concave otherwise. If λ(ω) is convex, the suffi-

cient condition in Proposition 2 is satisfied if and only if λ(c) ≥ 1, which is equivalent

to c ≥ ωo = 1/2. If λ(ω) is concave, the sufficient condition is satisfied if and only

if there exists γ > 0 such that λ(ω) ≥ 1 + γ(ω − c) and λ(ω) ≥ 1 + γ(ω − c), which

is equivalent to tL ≤ 2c − 1. Thus, under the assumption of c ≥ 1/2, the sufficient

condition in Proposition 2 always holds when tL ≤ 0, i.e., when λ(ω) is convex, but it

can also hold when tL > 0 so long as it is small relative to c.
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Now we provide a second set of sufficient conditions for solutions to the residual

relaxed problem to be regular. This is achieved by first providing a characterization

of candidate irregular solutions. Since condition (4) fails for an irregular solution σL,

the objective function (7) of the residual relaxed problem is strictly decreasing in pL

and thus the solution has pL = uL
H . That is, the no double deviation constraint for

the high type is binding at any irregular solution. For value distribution FH of the

high type that satisfies µH ≤ c, we have pL < c. This means that the strike price for

the low type at any irregular solution is lower than the seller’s cost. The following

lemma establishes σL(ω) = 0 for all ω < uL
H . The proof is in the appendix; it follows

a similar argument as in Lemma 2 by showing that if the seller allocates the good to

the low type with a positive probability for values lower than the strike price, there is

a profitable perturbation to σL.

Lemma 5 Suppose that µH ≤ c. If σL is an irregular solution to the residual relaxed

problem, then σL(ω) = 0 for all ω < uL
H .

Proof. See appendix.

Proposition 3 below shows that, given Lemma 5, if in addition ωo ≤ µH , then there

is no irregular solution to the residual relaxed problem. The idea is the following.

An irregular solution requires the high type to buy with a smaller probability after

misreporting as the low type than the truthful low type. Since fH(ω) > fL(ω) if and

only if ω > ωo, an irregular solution σL has to put relatively large weights on values

ω < ωo and correspondingly relatively small weights on values ω > ωo. At the same

time, among values ω < ωo, Lemma 5 requires σL to assign zero weights on those

smaller than uL
H . This becomes impossible when ωo is relatively small.

Proposition 3 Suppose that ωo ≤ µH ≤ c. Any solution to the residual relaxed prob-

lem is regular.

Proof. See appendix.

The sufficient condition in Proposition 3 for solutions to be regular is complemen-

tary to the one in Proposition 2. Note that both sets of conditions require c ≥ ωo.

Example 2 illustrates this complementarity.

Example 2 continued Since ωo = 1/2, and

µH =
1

6
tH +

1

2
,
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the sufficient condition of Proposition 3 is satisfied if

0 ≤ tH ≤ 6c− 3.

Recall that the sufficient condition for ruling out irregular solutions from Proposition

2 is tL ≤ 2c − 1. By assumption tL < tH , and 2c − 1 ≤ 6c − 3 when c ≥ 1/2, with

equality if c = 1/2. Thus, when tL > 2c − 1, the condition in Proposition 2 fails, but

there are values of tH that satisfy the sufficient condition in Proposition 3 so long as

c > 1/2. Conversely, when tH < 0, the condition in Proposition 3 fails, but there are

values of tL that satisfy the sufficient condition in Proposition 2 so long as c ≥ 1/2.

In addition to Propositions 2 and Proposition 3, Proposition 1 can also be viewed

as providing sufficient conditions for solutions to the residual relaxed problem to be

regular. The partitional information disclosure policy implied by Proposition 1 is

monotone. A natural question is then when the optimal information policy for type

L is a non-monotone partition with k < ω. To answer this question, we can apply

Lemma 4 to rewrite the residual objective function (7) as

Γ(k, k) ≡ ϕL

∫ k

k

(ω − c)fL(ω)dω − (1− ϕL)

∫ k

k

(ω − vLL)(fH(ω)− fL(ω))dω. (10)

Then we have

∂Γ(k, k)

∂k
=

[
−ϕL(k − c) + (1− ϕL)

(
vLL − k

) (
Λ(k, k)− λ(k)

)]
fL(k);

∂Γ(k, k)

∂k
=

[
ϕL(k − c)− (1− ϕL)

(
k − vLL

) (
λ(k)− Λ(k, k)

)]
fL(k).

The first-order conditions for optimal k and k are

∂Γ(k, k)

∂k
= 0,

∂Γ(k, k)

∂k
≥ 0 and k ≤ ω with complementary slackness. (11)

Although it is intuitive that, if the likelihood ratio λ (ω) increases sharply in the

neighborhood of ω, the optimal information policy assigned to type L will be a non-

monotone partition, it is difficult to find general sufficient conditions for the optimality

of non-monotone partitions. We need an upperbound for k to show ∂Γ(k,k)

∂k
|k=ω < 0 but

a good upperbound for k is not available. However, as one can see from the expression

of ∂Γ(k,k)

∂k
, the condition ∂Γ(k,k)

∂k
|k=ω < 0 is more likely to hold if ϕL is sufficiently small.

The following corollary provides sufficient conditions for a non-montone partition to
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be optimal for type L.

Corollary 1 At any regular solution, if λ′′(ω)/λ′(ω) > 3/(ω−c)+2f ′
L(ω)/fL(ω), then

for sufficiently small ϕL, the optimal σL has k < ω.

Proof. See appendix.

We use Example 2 again to illustrate that the conditions in Corollary 1 are sufficient

but not necessary. Indeed, for this example, when the likelihood ratio function λ(ω)

is unbounded at ω, which ensures it is convex and therefore the sufficient condition of

Proposition 2 is satisfied, the first order conditions (11) imply that k < ω regardless of

the value of ϕL. Conversely, whenever the likelihood ratio function is concave, in any

regular solution to the residual relaxed problem we have k = ω.

Example 2 continued Suppose that c ≥ 1/2. We have ω = 1, and

λ′′(1)

λ′(1)
= − 4tL

1 + tL
;
f ′
L(1)

fL(1)
=

2tL
1 + tL

.

Recall in this example the sufficient condition for regular solutions in Proposition 2 is

satisfied if tL ≤ 0. By Corollary 1, for tL < −3/(11 − 8c), the optimal σL has k < ω

when ϕL is sufficiently small.

If tL = −1, the likelihood ratio function λ(ω) is unbounded at ω, and we have

∂Γ(k, k)

∂k
= 2ϕL(k − c)(1− k)− 1

3
(1− ϕL)(tH + 1)

(
k − k

2− k − k

)2

(3− k − 2k).

The above is strictly negative when k = 1, violating the first order conditions (11).

Thus, regardless of the value of ϕL, the optimal σL has k < 1 if tL = −1.

Recall that λ(ω) is concave if λL ≥ 0. Recall also that the solution to residual

relaxed problem is regular so long as λ ≤ 2c−1. The first order conditions (11) become

k − c− (1− ϕL)(tH − tL)

6ϕL

(
k − k

1− tL + tLk + tLk

)2
3(1− tL) + 4tLk + 2tLk

1− tL + 2tLk
= 0;

k − c− (1− ϕL)(tH − tL)

6ϕL

(
k − k

1− tL + tLk + tLk

)2
3(1− tL) + 2tLk + 4tLk

1− tL + 2tLk
≥ 0,

and k ≤ 1, with complementary slackness. When λL ≥ 0, the second condition above

holds with a strict inequality whenever the first one holds. This implies that k = 1.

So far in this subsection we have focused on regular solutions to the residual relaxed

problem, and have shown that optimal disclosure policies feature a pair of nested
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intervals. Lemma 5 provides a preliminary characterization of irregular solutions, but

a complete characterization of irregular solutions is beyond the scope of this paper. We

conclude this subsection by noting that regularity is not necessary for a pair of nested

intervals to be optimal. This is illustrated with Example 1 from the beginning of this

subsection.

Example 1 continued The optimal disclosure in the full-surplus extraction mech-

anism features a pair of nested intervals. Type L buys when ω ∈ (1/2 , 1 ), with a

probability of 1/2 , while after a deviation type H also buys when ω ∈ (1/2 , 1 ), with a

probability of 3/8. Thus, the optimal mechanism as a solution to the residual relaxed

problem is not regular.

3.3 Necessity of information discrimination

We have shown that optimal discriminatory disclosure is a pair of nested intervals. Is

information discrimination necessary for profit maximization? As shown in Guo and

Shmaya (2019), although the optimal information policies σH and σL are different,

the optimal mechanism may nonetheless be implemented with a non-discriminatory

disclosure policy. Throughout this subsection, we will hold it as given that the optimal

information policy assigned to type H is a monotone partition with threshold c.

We first show that replication is achieved in the special case where the optimal in-

formation policy assigned to type L is also a monotone binary partition with threshold

k ∈ [c, ω). To see this, consider the non-discriminatory disclosure with common parti-

tion refined from monotone partition {[ω, c] , [c, ω]} assigned to type H and monotone

partition {[ω, k] , [k, ω]} assigned to type L under optimal discriminatory disclosure:

{[ω, c] , [c, k] , [k, ω]} ,

and set pH = c and pL = EL [ω|ω ∈ [k, ω]]. Under this common partition, the on-path

and off-path behavior of the two buyer types is the same as under optimal discrim-

inatory disclosure.14 Therefore, non-discriminatory disclosure with common refined

partition can replicate both on- and off-path behavior for both buyer types, and thus

attain the same revenue as the optimal discriminatory disclosure.

14For on-path behavior, type H will buy if and only if ω ∈ [c, k] ∪ [k, ω] and type L will buy if and
only if ω ∈ [k, ω], which is the same as before. For off-path behavior, suppose type H deviates and
pretends to be type L. By definition of pL, pL > k and thus the deviating type H buys if and only
if ω ∈ [k, ω], which is the same as before. Finally, a deviating type L will buy off-path if and only if
ω ∈ [c, k] ∪ [k, ω], which is again the same as before.
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Replication may fail, however, if the optimal information policy assigned to type

L is a non-monotone partition, with k < ω. The reason for the failure is as follows.

Consider the following non-discriminatory disclosure with common partition refined

from {[ω, c] , [c, ω]} and
{
[ω, k] ∪ [k, ω], [k, k]

}
:

{
[ω, c] , [c, k] ∪ [k, ω], [k, k]

}
.

Type H follows the “don’t-buy” recommendation off path only if

EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
≤ pL.

In contrast, under discriminatory disclosure, type H follows the “don’t-buy” recom-

mendation off path only if

EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
≤ pL.

Since

EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
> EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
,

it is easier under discriminatory disclosure to provide type H incentives to follow rec-

ommendation off path. In particular, if

EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
> pL ≥ EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
, (12)

the deviating type H buyer will buy more often off path and have higher deviation

payoff under non-discriminatory disclosure. The information rent for type H will be

higher under non-discriminatory disclosure, leading to a lower revenue for the seller.

Therefore, replication with the common refined partition fails. If we further assume

that the optimal information policy for type L is essentially unique in the sense that any

other optimal policy leads to the same purchasing behavior of type L who buys if and

only if ω ∈
[
k, k

]
with k < ω,15 then replications through any other non-discriminatory

disclosure policy must also fail if condition (12) holds, because any non-discriminatory

disclosure policy can always be implemented with a discriminatory disclosure policy.

Hence, we have

Proposition 4 Suppose that the optimal information policy for type L is essentially

unique where type L buys if and only if ω ∈
[
k, k

]
with k < ω and that condition (12)

15As we pointed out earlier, there are experiments with three or more outcomes that are equivalent
to experiments with binary outcomes. Hence, the optimal information policy for type L is not unique.
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is satisfied. Then the optimal mechanism cannot be implemented without information

discrimination.

We again use Example 2 from the previous subsection to illustrate Proposition 4.

Example 2 continued Recall that when c ≥ 1/2 and tL = −1, any solution to the

residual relaxed problem is regular with k < ω = 1. The two first order conditions (11)

both hold as equations:

k − c =
(1− ϕL)(tH + 1)

6ϕL

(
k − k

2− k − k

)2
3− 2k − k

1− k
;

k − c =
(1− ϕL)(tH + 1)

6ϕL

(
k − k

2− k − k

)2
3− k − 2k

1− k
.

To obtain an analytical solution, define q = (1−k)/(1−k), and combine the above two

first order conditions into an equation in q:

6(1− c)ϕL

(1− ϕL)(tH + 1)
=

(1− q)2

1 + q

(
2

q
+

1 + 2q

1 + q

)
.

It can be verified that there is a unique value of q ∈ (0, 1) that solves the above equa-

tion. For tH = 0, c = 1/2 and ϕL = 8/35, we have q = 1/2. From the first order

conditions, we obtain k = 5/8 and k = 13/16. At the solution, pL = 17/24, and

EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
= 123/160 > 17/24. Condition (12) is satisfied and replica-

tion fails.

Proposition 4 does not require the solution to be regular. As we have mentioned

at the end of the previous subsection, a solution to the residual relaxed problem does

not need to be regular for it to feature a nested-interval structure. This is illustrated

with Example 1 from the previous subsection.

Example 1 continued We have EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
= 1, pL = 3/4, and

EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
= 11/20. Therefore, condition (12) holds and replication

fails.

4 Discussion

We have shown that the optimal discriminatory disclosure has an nested interval struc-

ture, and information discrimination is in general necessary to obtain the maximal

profit. These results are obtained under the assumption that the information con-
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trolled by the seller is correlated with the buyer’s type and that the seller can price

discriminate against different buyer types. In this section we solve two variations of

the model and comparing optimal disclosure policy here to those in Eső and Szentes

(2007) and Guo and Shmaya (2019).

4.1 Independent Information

Suppose that the additional private information controlled by the seller is independent

of the buyer’s ex ante type. Formally, we follow Eső and Szentes (2007) to assume

that the seller’s signal z is equal to the random variable Fθ(ω), so that z is uniformly

distributed on Z = [0, 1], independent of θ. For analytical convenience, we write

ωθ (z) = F−1
θ (z) as type θ’s value for the product conditional on a signal realization z,

for each θ ∈ {H,L}. It is straightforward to verify that ωθ (z) is strictly increasing in

z for each θ, and ωH (z) ≥ ωL (z) for all z because by assumption type H first-order

stochastically dominates type L.

Following Eső and Szentes (2007), we adopt an indirect approach by first solving a

hypothetical full-disclosure problem in which the seller can release, and observe, the re-

alization of z to the buyer. In this hypothetical setting, the seller cannot infer anything

about the buyer’s ex ante type θ by observing z because z and θ are independent, while

the buyer has the same private ex ante information as in the original setting but none

of private ex post information. The seller’s hypothetical problem is to find a menu

of contracts,
(
xθ (z) , yθ (z)

)
θ∈{H,L}, to maximize her hypothetical revenue, where xθ(z)

and yθ(z) are allocation and transfer for each reported buyer type θ conditional on the

realized z, respectively.

Proposition 5 Suppose the optimal allocation in the hypothetical problem is given by

xθ (z) = 1
{
z ≥ zθ

}
with zH ≤ zL, and the following condition holds:16

E[ωH(z)|z ≤ zL] ≤ E[ωL(z)|z ≥ zL]. (13)

Then in the seller’s original problem, the optimal disclosure policy is a pair of monotone

binary partitions
(
σH , σL

)
with threshold zH and zL, respectively. The maximal profit

can also be achieved through non-discriminatory disclosure.

Proof. See appendix.

16The sufficient condition (13) is rather mild if ex ante types are not too different. It implies that
a type-H buyer who mimics type L would buy only if he learns that z is above zL.
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Let us compare Proposition 5 to results obtained in Eső and Szentes (2007) who

consider a model where the buyer’s ex ante type is continuous. They show that full

disclosure is optimal if the seller is restricted to disclose only information that is or-

thogonal to the buyer’s ex ante type. Since full disclosure is non-discriminatory, we can

also interpret their result as an equivalence result between optimal discriminatory and

non-discriminatory disclosure. Even though full disclosure is not optimal in our binary

type setting, the equivalence result – a robust property with independent information

– holds in both settings.

4.2 Uniform pricing

Now we return to the setting with correlated information and suppose that the seller

has to offer the same pricing scheme (a, p) to both types. Would optimal disclosure

remain discriminatory if we do not allow the seller to price discriminate? In general,

the answer is yes, in contrast to Wei and Green (2020) who show that information and

price discrimination are complementary with posterior participation constraint and

independent information.

Formally, for each θ = H,L, let σθ : Ω → [0, 1] be the probability that type θ re-

ceives the “buy” outcome. The seller chooses disclosure policy (σL, σH) and a contract

(a, p) to maximize her profit, subject to: (i) the interim participation constraint for

each type θ = H,L: ∫ ω

ω

fθ(ω)σ
θ(ω)(ω − p)dω ≥ a; (IRθ)

(ii) two obedience constraints, so the low type is willing to buy after the “buy” outcome

and the high type is willing to pass after the “don’t-buy” outcome:17∫ ω

ω

fL(ω)σ
L(ω)(ω − p)dω ⩾ 0 ⩾

∫ ω

ω

fH(ω)(1− σH(ω))(ω − p)dω; (OBθ)

17Since the price p is the same for the two types, by MLRP the interim participation constraints
imply that the type is willing to buy after the “buy” outcome and the low type is willing to pass after
the “don’t-buy” outcome.
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and (iii) two incentive compatibility constraints:18∫ ω

ω

fH(ω)σ
H(ω)(ω − p)dω ⩾

∫ ω

ω

fH(ω)σ
L(ω)(ω − p)dω, (ICH)∫ ω

ω

fL(ω)σ
L(ω)(ω − p)dω ⩾ max

{∫ ω

ω

fL(ω)σ
H(ω)(ω − p)dω, 0

}
. (ICL)

Proposition 6 Suppose c ≤ ω. Then the optimal disclosure policy consists of a pair of

nested intervals. Moreover, there is a mechanism without information discrimination

that gives the seller the same profit.

Proof. See appendix.

With c ≤ ω, the gain from trade is certain and it is optimal to set p > c in the

optimal mechanism. Hence, maximizing the seller’s profit is equivalent to maximizing

the trading probability with the buyer. Then a logic similar to the one in Guo and

Shmaya (2019) applies and the optimal disclosure is a pair of nested intervals. Alter-

natively, if the buyer’s participation constraints are ex post so that a = 0, then it is

necessarily true that p > c in the optimal solution and again the optimal disclosure is

a pair of nested intervals.

The optimality of nested intervals relies on the assumption of c ≤ ω which implies

p > c in the optimal pricing scheme. But can p > c hold in the optimal solution if

c > ω? The following example demonstrates that the optimal solution may feature

p < c and optimal disclosure may not be a pair of nested intervals.

Example 3 Suppose c = 1
2
and consider the following distributions

ω = 0 ω = 1
2

ω = 3
4

ω = 1

fH
7
16

7
16
(1− ε) 7

16
ε 1

8

fL
1
2

1
2
(1− ε) 1

2
ε 0

for some small ε > 0. Consider the following two information policies that induce the

efficient allocation:

σL (ω) =

{
1 if ω ∈

{
1
2
, 3
4

}
0 if ω ∈ {0, 1}

, and σH (ω) =

{
1 if ω ∈

{
3
4
, 1
}

0 if ω ∈
{
0, 1

2

} .

18In ICH we can ignore the possibility that type H deviates and buys at all signals. This is because
if a deviating type H always buys, then he will also always buy when he reports his type truthfully.
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The price p is chosen so that both types have the same on-path payoff:

−a+
1− ε

2

(
1

2
− p

)
+

ε

2

(
3

4
− p

)
= −a+

7

16
ε

(
3

4
− p

)
+

1

8
(1− p) .

This implies that

p =
8− 13ε

24− 28ε
,

and p < c for small ε > 0. The advance payment a is set to extract the full surplus:

a =
1

2
(1− ε)

(
1

2
− 8− 13ε

24− 28ε

)
+

1

2
ε

(
3

4
− 8− 13ε

24− 28ε

)
=

4 + 5ε− 7ε2

48− 56ε
.

Hence, both IRH and IRL bind. Furthermore, any price p > c cannot fully extract the

surplus because such a price cannot equalize the on-path payoffs of different types.

It remains to verify that all other constraints hold for small ε > 0. First, both price

bounds

p ≥ EH

[
ω|σH (ω) = 0

]
⇔ 8− 13ε

24− 28ε
≥ 1− ε

4− 2ε

and

p ≥ EH

[
ω|σL (ω) = 0

]
⇔ 8− 13ε

24− 28ε
≥ 2

9

hold for small ε. ICH constraint is satisfied for small ε because p < c and type L on-

path trading probability (1/2) is higher than type H off-path trading probability (7/16).

Finally, ICL constraint is also satisfied because for small ε,

0 ≥ −4 + 5ε− 7ε2

48− 56ε
+

1

2
ε

(
3

4
− p

)
.

In this example, the gain from trade is uncertain and optimal strike price p < c.

Why is it useful to set p < c for the seller? By pricing below cost, the seller can

subsidize trade with type L and raise the advance payment. Such a pricing scheme

can reduce information rent from type H, if it does not lead to substantial efficiency

loss in allocation. Discriminatory information disclosure can exactly help with that.

In particular, excluding value 1 from trade for type L has no efficiency loss since it has

zero probability, and excluding value 1/2 from trade for type H also has no efficiency

loss since the gain from trade is zero, while including value 1/2 for trade for type L

has no efficiency implication but can help boost up the advance payment.

There are two interesting takeaways from this example. First, even in the absence

of price discrimination, information discrimination can help reduce information rent

and hence increase profit. Second, without price discrimination, the buy regions of the
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two types may not be nested in the optimal disclosure policy.19

5 Concluding Remarks

Our characterization of optimal price and information discriminations restricts to de-

terministic pricing mechanisms. In the sequential screening model of Courty and Li

(2000), deterministic contracts are optimal with binary types, but randomization can

be optimal with three or more types. In Li and Shi (2021), we provide necessary and

sufficient conditions for randomization, and a characterization of optimal stochastic

sequential mechanisms. With binary types, but with an endogenous information pol-

icy, it is an open question whether the assumption of deterministic pricing schemes is

restrictive or not.

A natural question for future research is how to generalize our approach and char-

acterization to a model with more than two types or even a continuum of types. We

conjecture that the optimal information disclosure policy still has a nested-interval

structure at any regular solution to a suitably constructed “residual relaxed problem.”

At any such regular solution, a higher type has a greater probability of buying the

good after misreporting as a lower type than the truthful lower type, so that the indi-

vidual rationality constraint of the higher type follows from the individual rationality

constraint of the lower type and the “downward” incentive compatibility constraint.

Finding sufficient conditions on the primitives of the mechanism design problem to en-

sure that solutions are regular would be a challenge. The other important issue is that,

with more than two types, the residual relaxed problem has to drop global incentive

compatibility constraints. Our approach has to be validated by showing that solutions

to the residual relaxed problem have nested-interval structures and satisfy the dropped

global incentive compatibility constraints.

6 Appendix: Omitted Proofs

6.1 Proof of Lemma 1

First, IRL binds; otherwise raising aL slightly would not affect any constraint in the

relaxed problem and increase the profit given in the objective (1). Second, ICH binds.

Suppose not. Since IRL binds, the profit from type L in the objective (1) can be

19In Example 3, the values are discrete. Since all inequalities are strict, however, one can approxi-
mate this example by a continuous one where both observations hold.
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rewritten as ∫ ω

ω

(ω − c)σL(ω)fL(ω)dω.

Since ICH is slack, the solution to the relaxed problem must have σL(ω) = 1 for all

ω ≥ c and 0 otherwise. Given that IRL binds, the deviation payoff for type H is then

at least ∫ ω

c

(ω − pL)(fH(ω)− fL(ω))dω,

obtained by buying only after the “buy” outcome. The above is strictly positive because

FH(ω) first-order stochastic dominates FL(ω). Thus, IRH is also slack. But then the

seller’s profit can be increased by raising aH , a contradiction.

6.2 Proof of Lemma 2

Suppose that uL
H > pL at some solution to the relaxed problem. First, we claim that

in this case, the optimal information policy σL (ω) is a monotone partition such that

σL(ω) = 1 for all ω ≥ kL and 0 for ω < kL for some threshold kL ∈ (ω, ω). Suppose

this is not the case. Then, we can find k1 and k2 with k1 < k2, such that σL(ω) > 0 for

all ω ∈ (k1, k1 + dk1) for dk1 > 0, and σL(ω) < 1 for all ω ∈ (k2, k2 + dk2) for dk2 > 0.

Consider σ̃L such that σ̃L(ω) = σL(ω) except that, for some sufficiently small ϵ > 0,

σ̃L(ω) = σL(ω)− ϵ for ω ∈ (k1, k1 + dk1) and σ̃L(ω) = σL(ω) + ϵ for ω ∈ (k2, k2 + dk2),

where dk1 and dk2 satisfy

−fL(k1)dk1 + fL(k2)dk2 = 0.

By construction, ∫ ω

ω

σ̃L(ω)fL(ω)dω =

∫ ω

ω

σL(ω)fL(ω)dω.

This implies the total change in vLL is given by

dvLL = −(k1 − vLL)fL(k1)dk1∫ ω

ω
σL(ω)fL(ω)dω

+
(k2 − vLL)fL(k2)dk2∫ ω

ω
σL(ω)fL(ω)dω

=
(k2 − k1)fL(k1)dk1∫ ω

ω
σL(ω)fL(ω)dω

> 0.

Similarly,

duL
L =

(k1 − k2)fL(k1)dk1∫ ω

ω
(1− σL(ω))fL(ω)dω

< 0.
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It follows that by keeping pL unchanged, the seller can ensure that PBL is still satisfied

under σ̃L. Changing aL to continue to bind IRL, we have

daL = −(k1 − pL)fL(k1)dk1 + (k2 − pL)fL(k2)dk2 = (k2 − k1)fL(k1)dk1 > 0.

Since uL
H > pL, under σ̃L type H continues to strictly prefer to buy regardless of

the outcome after the deviation. Type H’s deviation payoff is thus µH − pL − aL,

which is decreased when aL is increased, and so ICH remains satisfied. But after

the modifications, the seller’s profit from type L in the objective (1) would increase,

because aL is increased. This is a contradiction to optimality. Thus, σL is given by a

two-step function with some threshold kL.

By Lemma 1, IRL and ICH bind at any solution to the relaxed problem. Given

that σL is a two-step function with kL, using uL
H > pL we can now write the seller’s

profit as

ϕH

∫ ω

ω

(ω − c)σH(ω)fH(ω)dω + ϕL

∫ ω

kL
(ω − c) fL(ω)dω

− ϕH

(
µH − pL −

∫ ω

kL

(
ω − pL

)
fL(ω)dω

)
.

The above is increasing in pL. A slight increase in pL does not violate PBL, because

σL is a monotone partition with threshold kL, which implies that vLL ≥ kL ≥ uL
H > pL.

IRH remains satisfied too, because type H could always misreport his type and then

buy only after the buy outcome, achieving the deviation payoff given by the left-hand

side of (4). This deviation payoff is non-negative regardless of pL, because σL is a

two-step function with kL and FH first order stochastically dominates FL. This is a

contradiction to optimality.

6.3 Proof of Lemma 3

Consider any solution to the relaxed problem with pH such that pH ≤ vHL . Then we

can use binding IRL and binding ICH (6) implied by Lemma 1 to rewrite ICL as∫ ω

ω

(ω − pL)(fH(ω)− fL(ω))σ
L(ω)dω ≤

∫ ω

c

(ω − pH)(fH(ω)− fL(ω))dω.

Suppose the above is violated. Then, consider the alternative of setting σ̂L(ω) = 1 for

ω ≥ c and 0 otherwise, and setting p̂L = pH . Together with âL that binds IRL, and

âH that binds ICH , this alternative satisfies (2), as well as (3) because σ̂L is weakly
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increasing. However, given that σL(·) and pL violate ICL, we have∫ ω

ω

(ω − pL)σL(ω)(fH(ω)− fL(ω))dω >

∫ ω

ω

(
ω − p̂L

)
σ̂L(ω)(fH(ω)− fL(ω))dω.

From the second integral of the objective (5), the seller’s profit under σ̂L(·) and p̂L is

higher than under σL(·) and pL. This contradicts the assumption that σL(·) and pL

solve the relaxed problem.

6.4 Proof of Lemma 4

We show by contradiction that, if pL and σL are a regular solution to the residual

relaxed problem, then σL is partitional with an interval buy region that contains pL.

Suppose not. Then, there exist k1 < k2 ∈ (ω, ω), with dk1, dk2 > 0, such that, (i) if

k1 > pL then σL(ω) < 1 for all ω ∈ (k1, k1+dk1) and σL(ω) > 0 for all ω ∈ (k2, k2+dk2),

and (ii) if k2 < pL then σL(ω) > 0 for all ω ∈ (k1, k1 + dk1) and σL(ω) < 1 for all

ω ∈ (k2, k2 + dk2).
20 Define a new information policy σ̃L that coincides with σL,

except σ̃L(ω) = σL(ω) + ϵ1 for all ω ∈ (k1, k1 + dk1) and σ̃L(ω) = σL(ω) + ϵ2 for

all ω ∈ (k2, k2 + dk2). Such ϵ1 and ϵ2 can be always be found for σ̃L to be a valid

information policy: in case (i), we choose ϵ1 > 0 > ϵ2, and in case (ii), we choose

ϵ1 < 0 < ϵ2. Furthermore, in either case, we choose ϵ1 and ϵ2 such that dvLL = 0, and

hence vLL = pL. This is equivalent to∑
i=1,2

(ki − pL)fL(ki)ϵidki = 0.

The change to the first term in (7) has the same sign as

∑
i=1,2

(ki − c)fL(ki)ϵidki >
k2 − c

k2 − pL

∑
i=1,2

(ki − pL)fL(ki)ϵidki = 0,

where the inequality follows because pL > c implies that (k− c)/(k− pL) is decreasing

in k, and k1 > pL with ϵ1 > 0 in case (i) and k1 < pL with ϵ1 < 0 in case (ii). If

uL
H < vLL, then uL

H < pL = vLL. Thus, both before and after the change from σL to σ̃L,

type H strictly prefers to buy only upon getting the buy outcome after misreporting

20Note that if the buy region for type L is not an interval, then there must exist a “hole” (ω−, ω+)
inside of the buy region such that σL (ω) ∈ [0, 1) for all ω ∈ (ω−, ω+). If pL lies below or inside the
hole, then we can pick k1 ∈ (ω−, ω+) and k2 > ω+ and hence conditions in case (i) are fulfilled. If pL

lies above the hole, then we can pick k1 < ω− and k2 ∈ (ω−, ω+) so that conditions in case (ii) are
fulfilled.
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as type L. The information rent of type H is therefore given by the second term in (7)

(without the negative sign). The change in the information rent has the same sign as

∑
i=1,2

(ki − pL)(fH(ki)− fL(ki))ϵidki <
fH(k2)− fL(k2)

fL(k2)

∑
i=1,2

(ki − pL)fL(ki)ϵidki = 0,

where the inequality follows because (fH(k) − fL(k))/fL(k) is increasing in k by like-

lihood ratio ranking, and k1 > pL with ϵ1 > 0 in case (i) and k1 < pL with ϵ1 < 0 in

case (ii). If uL
H = vLL, we have u

L
H = pL. Then, with the change from σL to σ̃L, the sign

of duL
H is the same as

−
∑
i=1,2

(ki − pL)fH(ki)ϵidki > −fH(k2)

fL(k2)

∑
i=1,2

(ki − pL)fL(ki)ϵidki = 0,

where the inequality follows because −fH(k)/fL(k) is decreasing in k by likelihood

ratio ranking, and k1 > pL with ϵ1 > 0 in case (i) and k1 < pL with ϵ1 < 0 in case

(ii). This implies that, after misreporting as type L, type H weakly prefers to buy

regardless of the recommendation by the seller, both before and after the change from

σL to σ̃L. Thus, the information rent of type H is instead

ϕH

(
µH − pL −

∫ ω

ω

(
ω − pL

)
σL(ω)fL(ω)dω

)
.

The above is unchanged when σL changes to σ̃L. Further, for infinitesimal changes

from σL to σ̃L, Lemma 3 continues to hold. Thus, regardless of whether uL
L < vLL or

uL
L = vLL, the change from σL to σ̃L increases the value of the objective function (7).

Finally, to show k > c, suppose by contradiction that k ≤ c. We use the interval

form to rewrite the residual objective function as

ϕL

∫ k

k

(ω − c)fL(ω)dω − ϕH

∫ k

k

(ω − pL)(fH(ω)− fL(ω))dω, (14)

Consider increasing k marginally and at the same time we increase pL so as to keep it

equal to vLL. The effect of the proposed change on the first term in the objective is

−ϕL(k − c)fL(k) ≥ 0.
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The effect on the second term in the objective without the negative sign is

−ϕH

(
vLL − k

) (
Λ(k, k)− λ(k)

)
fL(k).

The above expression is negative, because vLL > k, and because likelihood ratio domi-

nance implies that the difference in the last bracket is positive, implying that the rent

to type H is decreased. Therefore, the seller’s profit increases, which contradicts opti-

mality. Hence, k > c and the optimal disclosure policy in the regular solution is a pair

of nested intervals.

6.5 Proof of Lemma 5

As we argued in the text, if solution σL is irregular, then pL = uL
H < c. Moreover, there

must exist k2 > c such that σL(ω) > 0 for all ω ∈ (k2, k2+dk2) for dk2 > 0. Otherwise,

the trade surplus with type L – the first term in the residual objective function (7) –

would be negative, and the seller can exclude type L altogether and be better off.

Suppose by contradiction that there exists k1 < uL
H = pL such that σL(ω) > 0 for

all ω ∈ (k1, k1 + dk1) for dk1 > 0. Now, consider σ̃L such that σ̃L(ω) = σL(ω) except

that, for some sufficiently small ϵ > 0, σ̃L(ω) = σL(ω) − ϵ for ω ∈ (k1, k1 + dk1) and

σ̃L(ω) = σL(ω)− ϵ for ω ∈ (k2, k2 + dk2), where dk1 and dk2 satisfy

(k1 − uL
H)fH(k1)dk1 + (k2 − uL

H)fH(k2)dk2 = 0.

Note that the above is feasible because k1 < uL
H = pL < c < k2. By construction,

there is no change to uL
H . By keeping pL the same, from binding IRL we have that the

change to aL is given by

daL = −(k1 − pL)fL(k1)dk1 − (k2 − pL)fL(k2)dk2.

Using the condition on dk1 and dk2, and uL
H = pL, we have that daL has the same sign

as
fH(k2)

fL(k2)
− fH(k1)

fL(k1)
,

which is strictly positive by likelihood ratio dominance. Given that uL
H and pL are

unchanged, under σ̃L type H will buy the good with probability 1 after misreporting

as type L. Since aL is increased, ICH is satisfied. Finally, the trade surplus with type
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L – the first term in the residual objective function (7) – is changed by

−(k1 − c)fL(k1)dk1 − (k2 − c)fL(k2)dk2.

Using the condition on dk1 and dk2, the change to the trading surplus has the same

sign as
c− k1
pL − k1

fH(k2)

fL(k2)
− k2 − c

k2 − pL
fH(k1)

fL(k1)
.

The above is strictly positive, because of likelihood ratio dominance and because

c− k1
pL − k1

> 1 >
k2 − c

k2 − pL
.

This then contradicts the assumption that σL is a solution to the residual relaxed

problem.

6.6 Proof of Proposition 3

Let σL be any signal structure that fails (4) and satisfies σL(ω) = 0 for all ω < uL
H .

Define

k = inf
ω
{ω : σL(ω) > 0}.

Since σL fails (4), we have k < ωo. By assumption, uL
H ≤ k.

Suppose that σL(ω) < 1 for all ω ∈ (k1, k1 + dk1) for some k1 ∈ (k, ωo) and

dk1 > 0. Consider σ̃L such that σ̃L(ω) = σ̃L(ω) except that, for some sufficiently small

ϵ > 0, σ̃L(ω) = σL(ω) + ϵ for ω ∈ (k1, k1 + dk1). The change to the difference in the

probabilities of trade by type H after misreporting as type L and by the true type L

is given by

(fH(k1)− fL(k1))dk1 < 0,

because k1 < ωo. The change to uL
H has the same sign as

−(k1 − uL
H)fH(k1)dk1 < 0,

because uL
H ≤ k < k1. Thus, there exists a signal structure σ̃L for the low type, such

that for some k < ωo, we have σ̃L(ω) = 0 for all ω ∈ [ω, k) and σ̃L(ω) = 1 for all

ω ∈ (k, ωo], (4) fails and ũL
H ≤ k.

Next, we show that we can further restrict σ̃L to satisfy the condition of equal

trading probabilities for a deviating high type and the true low type. If this is not
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true, then we have∫ ω

ωo

(fH(ω)− fL(ω))(1− σ̃L(ω))dω > FL(k)− FH(k).

Then there exists k2 > ωo such that σL(ω) < 1 for all ω ∈ (k2, k2 + dk2) for some

dk2 > 0. Consider σ̂L such that σ̂L(ω) = σ̃L(ω) except that, for some sufficiently small

ϵ > 0, σ̂L(ω) = σ̃L(ω) + ϵ for ω ∈ (k2, k2 + dk2). The change to the difference in the

probabilities of trade by type H after misreporting as type L and by the true type L

is given by

−(fH(k2)− fL(k2))dk2 < 0,

because k2 > ωo. For sufficiently small ϵ, condition (4) continues to fail. The change

to ũL
H has the same sign as

−(k2 − ũL
H)fH(k2)dk2 < 0,

because ũL
H ≤ k < k2. Therefore, we can assume that under σ̃L condition (4) holds as

an equality.

To summarize, we have shown that if there is an irregular solution to the residual

relaxed problem that satisfies Lemma 5, then there exists σL with σL(ω) = 0 for all

ω ∈ [ω, k] and σL(ω) = 1 for all ω ∈ (k, ωo] for some k < ωo, such that (4) holds as

an equality, and uL
H ≤ k. Now, fix any k ∈ [ω, ωo]. Let Σ(k) be the set of all signal

structures σL with σL(ω) = 0 for all ω ∈ [ω, k] and σL(ω) = 1 for all ω ∈ (k, ωo], such

that ∫ ω

ωo

(fH(ω)− fL(ω))(1− σL(ω))dω = FL(k)− FH(k).

Let

uL
H(σ

L; k) =

∫ k

ω
ωfH(ω)dω +

∫ ω

ωo
ω(1− σL(ω))fH(ω)dω

FH(k) +
∫ ω

ωo
(1− σL(ω))fH(ω)dω

,

and define

σL(ω; k) ∈ arg min
σL∈Σ(k)

uL
H(σ

L; k).

When k = ω, any σL ∈ Σ(ω) satisfies∫ ω

ωo

(fH(ω)− fL(ω))(1− σL(ω))dω = 0.

Since fH(ω) > fL(ω) for all ω ∈ (ωo, ω), any σL in Σ(ω) satisfies σL(ω) = 1 for all
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ω > ωo. We can therefore set σL(·;ω) to σL(ω;ω) = 1 for all ω ∈ [ω, ω]. We have

uL
H(σ

L(·;ω);ω) ≥ ω.

When k = ωo, any σL ∈ Σ(ωo) satisfies∫ ω

ωo

(fH(ω)− fL(ω))(1− σL(ω))dω = FL(ωo)− FH(ωo).

This implies that σL in Σ(ωo) satisfies σ
L(ω) = 0 for all ω > ωo. We can therefore set

σL(·;ωo) to σL(ω;ω) = 0 for all ω ∈ [ω, ω]. By assumption, we have uL
H(σ

L(·;ωo);ωo) =

µH > ωo.

By the envelope theorem, the derivative of uL
H(σ

L(·; k); k) with respect to k has the

same sign as

k − uL
H(σ

L(·; k); k).

This means that as a function of k, uL
H(σ

L(·; k); k) can cross k only from above. Since

uL
H(σ

L(·;ω);ω) ≥ ω and uL
H(σ

L(·;ωo);ωo) > ωo, the above implies that uL
H(σ

L(·; k); k) >
k for all k ∈ (ω, ωo). This is a contradiction. The proposition follows from Lemma 4.

6.7 Proof of Corollary 1

Suppose by contradiction that we have k = ω for all sufficiently small ϕL. Recall from

(10) the residual objective function Γ(k, k). Note that in the limit of ϕL = 0, we have

k = k; otherwise, the first term of Γ(k, k) is 0 in the limit, but the second term is

strictly positive, which would be a contradiction. Then, the first-order condition with

respect to k becomes ∂Γ(k,k)
∂k

|k=ω ≥ 0 and k ≤ ω with complementary slackness. It must

hold with equality for ϕL sufficiently close to 0. If not, we have k = k = ω and hence

∂Γ(k, k)

∂k
|k=k=ω = −ϕL(ω − c)fL(ω) < 0,

contradicting the assumption that k = k = ω in the limit. Therefore, we can rewrite

the first-order condition for k as

ϕL

1− ϕL

(k − c)−
(
vLL − k

)
(Λ(k, ω)− λ(k)) = 0. (15)

The corollary follows immediately from the following claim: when ϕL is sufficiently

small, for any k satisfying first-order condition (15), the first-order condition for k
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evaluated at k = ω,

ϕL

1− ϕL

(ω − c)−
(
ω − vLL

)
(λ(ω)− Λ(k, ω)) ≥ 0, (16)

is violated if λ′′(ω)/λ′(ω) > 3/(ω−c)+2f ′
L(ω)/fL(ω). To prove the above claim, define

Ψ(k) ≡ (k − c)
(
ω − vLL

)
(λ(ω)− Λ(k, ω))− (ω − c)

(
vLL − k

)
(Λ(k, ω)− λ(k)) .

It follows from (15) that condition (16) is violated if Ψ(k) > 0 for k sufficiently close

to but strictly below ω. Note that Ψ(ω) = 0 and

Ψ′(k) =
(
ω − vLL

)
(λ(ω)− Λ(k, ω))− (k − c)

(
(λ(ω)− Λ(k, ω))

∂vLL
∂k

+
(
ω − vLL

) ∂Λ(k, ω)
∂k

)
− (ω − c)

(
(Λ(k, ω)− λ(k))

(
∂vLL
∂k

− 1

)
+
(
vLL − k

)(∂Λ(k, ω)

∂k
− λ′(k)

))
,

where

∂vLL
∂k

=
fL(k)

1− FL(k)
(vLL − k);

∂Λ(k, ω)

∂k
=

fL(k)

1− FL(k)
(Λ(k, ω)− λ(k)) .

Using L’Hopital’s rule, we have

lim
k→ω

∂vLL
∂k

=
1

2
; lim

k→ω

∂Λ(k, ω)

∂k
=

1

2
λ′(ω).

Thus, Ψ′(ω) = 0. Moreover,

Ψ′′(k) = −2 (λ(ω)− Λ(k, ω))
∂vLL
∂k

− 2
(
ω − vLL

) ∂Λ(k, ω)
∂k

+ 2(k − c)
∂vLL
∂k

∂Λ(k, ω)

∂k

− (k − c)

(
(λ(ω)− Λ(k, ω))

∂2vLL
∂(k)2

+
(
ω − vLL

) ∂2Λ(k, ω)

∂(k)2

)
− 2(ω − c)

(
∂vLL
∂k

− 1

)(
∂Λ(k, ω)

∂k
− λ′(k)

)
− (ω − c)

(
(Λ(k, ω)− λ(k))

∂2vLL
∂k2 +

(
vLL − k

)(∂2Λ(k, ω)

∂k2 − λ′′(k)

))
,
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where

∂2vLL
∂(k)2

=
f ′
L(k)

fL(k)

∂vLL
∂k

+
fL(k)

1− FL(k)

(
2
∂vLL
∂k

− 1

)
;

∂2Λ(k, ω)

∂(k)2
=

f ′
L(k)

fL(k)

∂Λ(k, ω)

∂k
+

fL(k)

1− FL(k)

(
2
∂Λ(k, ω)

∂k
− λ′(k)

)
.

Using L’Hopital’s rule, the limits of ∂vLL/∂k and ∂Λ(k, ω)/∂k, we have

lim
k→ω

∂2vLL
∂k2 =

f ′
L(ω)

6fL(ω)
; lim

k→ω

∂2Λ(k, ω)

∂(k)2
=

f ′
L(ω)λ

′(ω)

6fL(ω)
+

λ′′(ω)

3
.

Thus, Ψ′′(ω) = 0. Taking derivatives of Ψ′′(k) and evaluating at k = ω, using the limits

of ∂vLL/∂k and ∂2vLL/∂(k)
2, and the limits of ∂Λ(k, ω)/∂k and ∂2Λ(k, ω)/∂k2, we have

Ψ
′′′
(ω) =

(
3

2
+ (ω − c)

f ′
L(ω)

fL(ω)

)
λ′(ω)− 1

2
(ω − c)λ′′(ω).

Under the condition stated in the lemma, we have Ψ
′′′
(ω) < 0, and thus Ψ(k) > 0 for

k sufficiently close to ω.

6.8 Proof of Proposition 5

Following the standard procedure, we can write the seller’s revenue in the hypothetical

problem as

ϕH

∫ z

z

(ωH (z)− c)xH (z) dz

+ϕL

∫ z

z

(
ωL (z)− c− ϕH

ϕL

(ωH (z)− ωL (z))

)
xL (z) dz (17)

If optimal allocation in the hypothetical problem is given by xθ (z) = 1
{
z ≥ zθ

}
, then

(zL, zH) must solve

ωL (z)− c− ϕH

ϕL

(ωH (z)− ωL (z)) = 0,

ωH (z)− c = 0.

These two equations, together with the fact of ωH (z) ≥ ωL (z) for all z, imply that

zH ≤ zL. It is straightforward to verify that this allocation is incentive compatible for
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the hypothetical problem, and the maximal hypothetical revenue is thus

∑
θ=L,H

ϕθ

∫ z

zθ
(ωθ (z)− c) dz − ϕH

∫ z

zL
(ωH (z)− ωL (z)) dz. (18)

Now consider the solution (zH , zL) to the hypothetical problem in the original

problem. Suppose that the seller in the original setting commits to a disclosure policy(
σH , σL

)
where both σH and σL are monotone partitions with thresholds zH and zL,

respectively. The proof below constructs a menu of option contracts and verifies that

the seller attains the hypothetical revenue given in (18). Consider a menu of option

contracts
(
aθ, pθ

)
, where strike price pθ = ωθ(z

θ) and advanced payments aL and aH

are chosen to bind IRL and ICH . Under condition (13), all deviating buyer types buy

only if they are recommended to buy. Then, the advanced payments are given by

aL =

∫ z

zL

(
ωL (z)− pL

)
dz

aH = aL +

∫ z

zH

(
ωH (z)− pH

)
dz −

∫ z

zL

(
ωH (z)− pL

)
dz

It is straightforward to verify that IRH and ICL are also satisfied. The binding ICH

constraint implies that the information rent is∫ z

zL

(
ωH (z)− pL

)
dz −

∫ z

zL

(
ωL (z)− pL

)
dz =

∫ z

zL
(ωH (z)− ωL (z)) dz.

The seller’s revenue is then the difference between the expected total trading surplus

over all ex ante types and the information rent. It is immediate from the expression

(18) that the hypothetical revenue is attained by the same pair of monotone partitions.

Since the seller can always discard information about z, the hypothetical revenue is

clearly a revenue upper-bound for the original setting. Hence, this pair of monotone

partitions is optimal among all disclosure policies.

To attain the maximal profit by non-discriminatory disclosure, the seller can reveal

to all buyer types the partition of
{[
z, zH

]
,
[
zH , zL

]
, [zL, z]

}
, and set pH = ωH

(
zH

)
and pL = E[ωL (z) |z ≥ zL].

6.9 Proof of Proposition 6

Let (a, p) and (σH , σL) denote an optimal mechanism without price discrimination. We

argue that we must have p > c. Suppose by contradiction p ≤ c. By assumption of
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c ≤ ω, both buyer types would buy regardless of the disclosure policy, so the seller’s

profit under (a, p) with p ≤ c is a+ p− c. It follows from IRL that a+ p− c is bounded

above by ∫ ω

ω

(ω − p)fL(ω)dω + p− c =

∫ ω

ω

ωfL(ω)dω − c.

Consider an alternative mechanism with σ̂H (ω) = 1 for all ω, σ̂L (ω) = 1 {ω ≥ k},
â = 0 and p̂ = EL [ω|ω ≥ k], which is feasible and incentive compatible. The seller’s

profit is

ϕL (p̂− c) [1− FL (k)] + ϕH (p̂− c)

If k = c, it replicate the profit under mechanism
{
(a, p), (σH , σL)

}
. Its derivative with

respect to k, evaluated at k = c, is

ϕH
fL (c)

1− FL (c)
(EL [ω|ω ≥ c]− c) > 0.

Therefore, the alternative mechanism
{
(â, p̂), (σ̂H , σ̂L)

}
with k > c can generate a

strictly higher profit than mechanism
{
(a, p), (σH , σL)

}
. A contradiction to the opti-

mality of
{
(a, p), (σH , σL)

}
. Thus, we have p > c in the optimal pricing scheme.

If only the high type participates in this optimal scheme, then the seller can rec-

ommend that the high type buys if and only if ω ⩾ c and can let a be zero and let

p be the high type’s expected value conditional on ω ⩾ c. This optimal scheme can

be implemented without information discrimination. Hence, from now on, we focus on

the parameter region in which it is optimal to serve both types.

First, consider the relaxed problem without ICL constraint. For each θ ∈ {H,L},
we let tθ and t

θ
be such that tθ ⩽ p ⩽ t

θ
, and∫ p

tθ
fθ(ω)(ω − p)dω =

∫ p

ω

fθ(ω)σ
θ(ω)(ω − p)dω,∫ t

θ

p

fθ(ω)(ω − p)dω =

∫ ω

p

fθ(ω)σ
θ(ω)(ω − p)dω.

By definition, the high type’s payoff stays the same if he buys when the value is in the

interval [tH , t
H
], and the low type’s payoff stays the same if he buys when the value is

in the interval [tL, t
L
]. The IR constraints (IRθ) and the obedience constraints (OBθ)

are unaffected.

We claim that the above concentration makes the high type less willing to mimic

40



low type: ∫ ω

ω

fH(ω)σ
L(ω)(ω − p)dω ≥

∫ tL

tL

fH(ω)(ω − p)dω.

To see this, suppose that σL has two values p < ω1 < ω2 such that σL(ω1) < 1 and

σL(ω2) > 0. We can now change the probabilities of buying at (ω1, ω2) to

(σL(ω1) + ε1, σ
L(ω2)− ε2), for some ε1 > 0, ε2 > 0,

so that type L is indifferent. This means that

ε1(ω1 − p)fL(ω1)− ε2(ω2 − p)fL(ω2) = 0,

which implies that

ε2 = ε1
(ω1 − p)fL(ω1)

(ω2 − p)fL(ω2)
.

The high type’s payoff from mimicking the low type, under this new mechanism, will

change by

ε1(ω1 − p)fH(ω1)− ε2(ω2 − p)fH(ω2) = ε1(ω1 − p)

(
fH(ω1)− fH(ω2)

fL(ω1)

fL(ω2)

)
⩽ 0,

where the inequality follows from the MLRP because by assumption ω1 < ω2. Hence,

ICH constraint is relaxed after concentration.

The change from σθ(ω) to [tθ, t
θ
] also increases the seller’s profit from each type

θ = H,L by increasing the probability that type θ buys the good. To see this, note

that from the definition of t
θ
we have∫ t

θ

p

(ω − p)(1− σθ(ω))fθ(ω)dω =

∫ ω

t
θ
(ω − p)σθ(ω)fθ(ω)dω.

Thus,

(t
θ − p)

∫ t
θ

p

(1− σθ(ω))fθ(ω)dω ≥ (t
θ − p)

∫ ω

t
θ
σθ(ω)fθ(ω)dω,

which implies that ∫ t
θ

p

fθ(ω)dω ≥
∫ ω

p

σθ(ω)fθ(ω)dω.
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Similarly, from the definition of tθ we have∫ p

tθ
fθ(ω)dω ≥

∫ p

ω

σθ(ω)fθ(ω)dω,

and thus ∫ t
θ

tθ
fθ(ω)dω ≥

∫ ω

ω

fθ(ω)σ
θ(ω)dω.

Since p ≥ c, the seller’s profit is higher when type θ buys more often. It follows that

in the relaxed problem the solution in σθ is given by σθ(ω) = 1 for ω ∈ [tθ, t
θ
] for each

θ = H,L.

Second, we argue that the solution to the relaxed problem has the nested interval

structure with tH ⩽ tL and t
H

⩾ t
L
. Suppose by contradiction that the intervals are

not nested as claimed. It is sufficient to rule out the following three cases:

(i) If tH ⩽ tL and t
H

< t
L
, we can extend the buy interval for the high type to

[tH , t
L
]. Since we added some signal realizations above p to the high type’s buy

interval, both IRH and ICH are still satisfied. Furthermore, the OBL constraint

is unaffected while the OBH constraint is relaxed after the change. The seller’s

profit increases, contradicting the assumption that (σL, σH) is part of the solution

to the relaxed problem.

(ii) If tH > tL and t
H
⩾ t

L
, we can extend the intervals for both types to [tL, ω]. The

IRL constraint is still satisfied, since we added some sigal realizations above p to

the low type’s interval, while the IRH constraint is also satisfied because the high

type’s buying probability is weakly higher than the low type’s due to likelihood

ratio dominance. The ICH constraint is trivally satisfied, and both obedience

constraints are weakly relaxed. The seller’s profit increases, contradicting the

assumption that (σL, σH) is part of the solution to the relaxed problem.

(iii) If tH ≥ tL and t
H

⩽ t
L
with at least one inequalities holding strictly, we can

again extend the interval for both types to [tL, ω]. As in case (ii), all constraints

are still satisfied. The seller’s profit increases, contradicting the assumption that

(σL, σH) is part of the solution to the relaxed problem.

Third, we claim that the solution to the relaxed problem satisfies the dropped ICL

constraint and hence also solves the original problem. Suppose that ICL is violated.
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Since the relaxed solution satisfies OBL, a violation of ICL implies that∫ tH

tH

fL(ω)(ω − p)dω >

∫ tL

tL

fL(ω)(ω − p)dω ≥ 0.

Then the seller could just change σL to σH , which satisfies all constraints. Since type L

now buys more often and since p > c, the seller’s revenue is increased, a contradiction

to assumption that we have a solution to the relaxed problem.

Finally, we argue that the seller’s maximal profit generated by optimal discrimina-

tory disclosure can be achieved by a non-discriminatory information disclosure policy.

Since the buy intervals are nested with tH ⩽ tL and t
H

⩾ t
L
, the seller can reveal to

both buyer types whether ω is in [tL, t
L
] or in [tH , tL] ∪ [t

L
, t

H
] or in [ω, ω] \ [tH , t

H
].

Both types are willing to buy when ω ∈ [tL, t
L
]. By the ICH constraint, we have∫

ω∈[tH ,tL]∪[tL,tH ]

fH(ω)(ω − p)dω ≥ 0,

so the high type is also willing to buy if ω ∈ [tH , tL] ∪ [t
L
, t

H
]. Hence, for each type,

this non-discriminatory information policy induces a trading probability weakly higher

than the one under the optimal discriminatory disclosure. Since p > c and the opti-

mal discriminatory disclosure weakly dominates the non-discriminatory one, this non-

discriminatory information policy must yield the same profit as the optimal discrimi-

natory disclosure.
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