
C Derivation of qα, rα, and sα

Derivation of qα and rα. Let T u = q(1−fα)v̄−qp log q and T o = q(fαv̄−p) denote

the two terms in the definition of rα:

rα = max
(q,p)∈[0,1]×[0,fαv̄]

min {q(1− fα)v̄ − qp log q, q(fαv̄ − p)}

It is readily verified that T u increases in price p whereas T o decreases in p. Moreover,

T u ! T o when p = 0 and T u " T o when p = fαv̄. Hence, for any fixed q, min{T u, T o}
is achieved by the value of p which satisfies T u = T o, that is:

p =
αfαv̄

1− log q
.

Substituting this value of p into T u and T o, we have

T u = T o = qfαv̄

(

1−
α

1− log q

)

. (17)

This term (17) is concave in q and increases in q at q = 0. Moreover, if α ! 1/2, this

term (17) increases in q also at q = 1. In this case, the maximum is achieved at q = 1

so:

qα = 1, and rα =
1− α

2− α
v̄ = (1− fα)v̄.

If α > 1/2, the term (17) decreases in q at q = 1 so the maximum is achieved at an

interior q. In this case, qα is given by setting the derivative of (17) with respect to q

to zero, so:

qα = e1−
α+

√
α(α+4)
2 , and rα =

(

2 + α−
√

α(α + 4)
)

e1−
α+

√
α(α+4)
2

2(2− α)
v̄.

Derivation of sα. The value of sα is given by:

sα = (sup{q(fαv̄ − p) : q(1− fα)v̄ − qp log q > rα, (q, p) ∈ [0, 1]× [0, fαv̄]})+

= (sup{T o : T u > rα, (q, p) ∈ [0, 1]× [0, fαv̄]})+ .

We first explain that the value of sα is at most rα. Given the definition of rα,

min{T u, T o} ! rα for any (q, p) ∈ [0, 1]× [0, fαv̄]. Hence, for any (q, p) ∈ [0, 1]× [0, fαv̄]

such that T o > rα, it holds that T u ! rα. The value of sα is the supremum of such T u,
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so it is at most rα.

We next argue that for α > 1/2, the value of sα equals rα. Consider the quantity-

price pair
(

qα,
αfαv̄

1−log qα
+ ε

)

, which is in [0, 1] × [0, fαv̄] for small enough ε > 0. The

value of T u under this pair is strictly above rα, because (i) T u equals rα under the pair
(

qα,
αfαv̄

1−log qα

)

, and (ii) T u is strictly increasing in p for any q ∈ (0, 1). As ε goes to zero,

the value of T o under the pair
(

qα,
αfαv̄

1−log qα
+ ε

)

goes to rα.

We next consider the case in which α ! 1/2. The condition T u > rα is satisfied if

and only if q ∈ (0, 1) and

p >

(α−1)v̄
α−2 − rα

q

log q
= (1− fα)v̄

1− q

−q log q
. (18)

The lower bound in (18) decreases in q, so it is at least (1−fα)v̄. Since (1−fα)v̄ = fαv̄

for α = 0, it follows that there exists no (q, p) ∈ [0, 1] × [0, fαv̄] such that T u > rα.

Hence, for α = 0, sα equals zero. For α ∈ (0, 1/2], since T o decreases in price p, the

supremum of T o is achieved when p approaches the lower bound in (18). Substituting

this lower bound into T o, we have:

T o =
v̄((1− α)(1− q) + q log q)

(2− α) log q
, for q ∈ (0, 1).

This term is convex in q and equals zero when q = 0, so the supremum of T o is achieved

when q approaches 1, and is equal to:

α

2− α
v̄ = αfαv̄, for α ∈ (0, 1/2].

D An example that illustrates the role of (−d(q))

Suppose that P ≡ 1 and that P (z) = 1 if z ! b and P (z) = 0 if z > b for some

parameter b ∈ (0, 1). Suppose that α = 0, so f0 = 1/2. Then, d(q) = q/2 for q ! b and

d(q) = b/2 for q > b. There is an optimal policy with s being zero. Substituting s = 0

and d(q) into the optimal policy (9), we reduce the policy to:

ρ(q, p) =







q
2 , if q ! b,

b
2 +min

{

p, 1
2

}

(q − b), if q > b.
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According to this policy, for the first b units the firm produces, its average revenue

is 1/2, which is a fraction f0 of the value to a consumer. For the remaining units,

about which the regulator does not know the value to a consumer, the firm gets the

market price p per unit, capped by a fraction f0 of the highest possible value to a

consumer. If the firm chooses (q, p) = (1, 0), the total consumer value Θ(1, 0) that the

firm proves it has created is b. However, the regulator only gives the firm b/2 instead

of min
{

f0V (1),Θ(1, 0)
}

= min{1/2, b}.

3


	Introduction
	Environment
	Main result
	Lower bound on worst-case regret
	Optimal policy
	Optimal policy for =0 and that for =1
	Optimal policy for [0,1]

	When does the firm clear the market?

	Regulatory policies in practice
	Incorporating additional knowledge
	Additional knowledge about demand
	The regulator knows the inverse-demand function: P=P=P
	Both P and P are constant functions

	Additional knowledge about cost

	Conclusion
	Bounds (P,P) on the inverse-demand function P
	The case that P0 and Pbarv
	Proof of lower bound
	Proof of optimality
	Underproduction
	Overproduction


	Proof of Theorem 3.3
	Derivation of q, r, and s
	An example that illustrates the role of (-d(q))

