C Derivation of q_{α} , r_{α} , and s_{α}

Derivation of q_{α} and r_{α} . Let $T^{u} = q(1 - f_{\alpha})\bar{v} - qp\log q$ and $T^{o} = q(f_{\alpha}\bar{v} - p)$ denote the two terms in the definition of r_{α} :

$$r_{\alpha} = \max_{(q,p)\in[0,1]\times[0,f_{\alpha}\bar{v}]} \min\{q(1-f_{\alpha})\bar{v} - qp\log q, \ q(f_{\alpha}\bar{v} - p)\}$$

It is readily verified that T^u increases in price p whereas T^o decreases in p. Moreover, $T^u \leq T^o$ when p = 0 and $T^u \geq T^o$ when $p = f_\alpha \bar{v}$. Hence, for any fixed q, $\min\{T^u, T^o\}$ is achieved by the value of p which satisfies $T^u = T^o$, that is:

$$p = \frac{\alpha f_{\alpha} \bar{v}}{1 - \log q}.$$

Substituting this value of p into T^u and T^o , we have

$$T^{u} = T^{o} = q f_{\alpha} \bar{v} \left(1 - \frac{\alpha}{1 - \log q} \right).$$
(17)

This term (17) is concave in q and increases in q at q = 0. Moreover, if $\alpha \leq 1/2$, this term (17) increases in q also at q = 1. In this case, the maximum is achieved at q = 1 so:

$$q_{\alpha} = 1$$
, and $r_{\alpha} = \frac{1 - \alpha}{2 - \alpha} \bar{v} = (1 - f_{\alpha}) \bar{v}$.

If $\alpha > 1/2$, the term (17) decreases in q at q = 1 so the maximum is achieved at an interior q. In this case, q_{α} is given by setting the derivative of (17) with respect to q to zero, so:

$$q_{\alpha} = e^{1 - \frac{\alpha + \sqrt{\alpha(\alpha+4)}}{2}}, \text{ and } r_{\alpha} = \frac{\left(2 + \alpha - \sqrt{\alpha(\alpha+4)}\right)e^{1 - \frac{\alpha + \sqrt{\alpha(\alpha+4)}}{2}}}{2(2 - \alpha)}\bar{v}.$$

Derivation of s_{α} . The value of s_{α} is given by:

$$s_{\alpha} = (\sup\{q(f_{\alpha}\bar{v}-p): q(1-f_{\alpha})\bar{v}-qp\log q > r_{\alpha}, (q,p) \in [0,1] \times [0, f_{\alpha}\bar{v}]\})^{+}$$

= $(\sup\{T^{o}: T^{u} > r_{\alpha}, (q,p) \in [0,1] \times [0, f_{\alpha}\bar{v}]\})^{+}.$

We first explain that the value of s_{α} is at most r_{α} . Given the definition of r_{α} , $\min\{T^u, T^o\} \leq r_{\alpha}$ for any $(q, p) \in [0, 1] \times [0, f_{\alpha}\bar{v}]$. Hence, for any $(q, p) \in [0, 1] \times [0, f_{\alpha}\bar{v}]$ such that $T^o > r_{\alpha}$, it holds that $T^u \leq r_{\alpha}$. The value of s_{α} is the supremum of such T^u , so it is at most r_{α} .

We next argue that for $\alpha > 1/2$, the value of s_{α} equals r_{α} . Consider the quantityprice pair $\left(q_{\alpha}, \frac{\alpha f_{\alpha} \bar{v}}{1-\log q_{\alpha}} + \varepsilon\right)$, which is in $[0,1] \times [0, f_{\alpha} \bar{v}]$ for small enough $\varepsilon > 0$. The value of T^{u} under this pair is strictly above r_{α} , because (i) T^{u} equals r_{α} under the pair $\left(q_{\alpha}, \frac{\alpha f_{\alpha} \bar{v}}{1-\log q_{\alpha}}\right)$, and (ii) T^{u} is strictly increasing in p for any $q \in (0,1)$. As ε goes to zero, the value of T^{o} under the pair $\left(q_{\alpha}, \frac{\alpha f_{\alpha} \bar{v}}{1-\log q_{\alpha}} + \varepsilon\right)$ goes to r_{α} .

We next consider the case in which $\alpha \leq 1/2$. The condition $T^u > r_{\alpha}$ is satisfied if and only if $q \in (0, 1)$ and

$$p > \frac{\frac{(\alpha-1)\bar{v}}{\alpha-2} - \frac{r_{\alpha}}{q}}{\log q} = (1 - f_{\alpha})\bar{v}\frac{1-q}{-q\log q}.$$
(18)

The lower bound in (18) decreases in q, so it is at least $(1 - f_{\alpha})\bar{v}$. Since $(1 - f_{\alpha})\bar{v} = f_{\alpha}\bar{v}$ for $\alpha = 0$, it follows that there exists no $(q, p) \in [0, 1] \times [0, f_{\alpha}\bar{v}]$ such that $T^u > r_{\alpha}$. Hence, for $\alpha = 0$, s_{α} equals zero. For $\alpha \in (0, 1/2]$, since T^o decreases in price p, the supremum of T^o is achieved when p approaches the lower bound in (18). Substituting this lower bound into T^o , we have:

$$T^{o} = \frac{\bar{v}((1-\alpha)(1-q) + q\log q)}{(2-\alpha)\log q}, \text{ for } q \in (0,1).$$

This term is convex in q and equals zero when q = 0, so the supremum of T^o is achieved when q approaches 1, and is equal to:

$$\frac{\alpha}{2-\alpha}\bar{v} = \alpha f_{\alpha}\bar{v}, \text{ for } \alpha \in (0, 1/2]$$

D An example that illustrates the role of (-d(q))

Suppose that $\overline{P} \equiv 1$ and that $\underline{P}(z) = 1$ if $z \leq b$ and $\underline{P}(z) = 0$ if z > b for some parameter $b \in (0, 1)$. Suppose that $\alpha = 0$, so $f_0 = 1/2$. Then, $\underline{d}(q) = q/2$ for $q \leq b$ and $\underline{d}(q) = b/2$ for q > b. There is an optimal policy with s being zero. Substituting s = 0 and $\underline{d}(q)$ into the optimal policy (9), we reduce the policy to:

$$\rho(q, p) = \begin{cases} \frac{q}{2}, & \text{if } q \leq b, \\ \frac{b}{2} + \min\left\{p, \frac{1}{2}\right\}(q - b), & \text{if } q > b. \end{cases}$$

According to this policy, for the first b units the firm produces, its average revenue is 1/2, which is a fraction f_0 of the value to a consumer. For the remaining units, about which the regulator does not know the value to a consumer, the firm gets the market price p per unit, capped by a fraction f_0 of the highest possible value to a consumer. If the firm chooses (q, p) = (1, 0), the total consumer value $\Theta(1, 0)$ that the firm proves it has created is b. However, the regulator only gives the firm b/2 instead of min $\{f_0\overline{V}(1), \Theta(1, 0)\} = \min\{1/2, b\}$.