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Abstract

This paper explores how favor exchange in communities influences investment and

wealth dynamics. Our main result identifies a key obstacle to wealth accumulation:

wealth crowds out favor exchange. Low-wealth households are forced to choose between

growing their wealth and maintaining access to the support of their communities. The

result is that some communities are “left behind,” with wealth disparities persisting,

and sometimes growing, over time. Using numerical simulations, we show that “place-

based” policies encourage both favor exchange and wealth accumulation and so have

the potential to especially benefit left-behind communities.
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1 Introduction

Rising economic tides do not lift all households equally. Many economies suffer from severe

spatial inequality, as some communities are excluded from economic opportunities and re-

main “left behind” (Economist 2017; Austin et al. 2018). Such left-behind communities are

prevalent in both rich and developing countries, and in both rural and urban areas.1

Faced with limited economic prospects, members of left-behind communities rely on one

another for practical support. Neighbors engage in all kinds of favor exchange, from the trade

of food, lodging, and childcare among poor communities in Milwaukee (Desmond 2012, 2016)

and immigrant groups in Miami (Portes and Sensenbrenner 1993), to the exchange of rice

and kerosene among villagers in India (Jackson et al. 2012). Yet, in sharp contrast to its role

in improving consumption, community support plays only a limited role in improving wealth

(Stack 1975). Instead, households tend to merely “get by” (Warren et al. 2001), even in

the presence of seemingly high-return investments like paying off short-term debts (Ananth

et al. 2007, Stegman 2007, Mel et al. 2008). For all of its benefits, why doesn’t community

support translate to growing wealth?

This paper studies wealth accumulation in left-behind communities. We develop a model

of favor exchange, investment dynamics, and mobility across locations. Using this model,

we identify a key constraint that prevents households in left-behind communities from accu-

mulating wealth: wealth crowds out favor exchange. Households that rely on favor exchange

therefore face sharp costs to investment, since growing their wealth entails losing access to

community support. The outcome is a persistent wealth gap between left-behind communi-

ties and the rest of the economy.

The key to these results is what we call the “too big for their boots” effect, which is that

wealth undermines trust. Neighbors are willing to support a household only if they trust it

to reciprocate in the future. Rather than reciprocate, however, that household can instead

1In the United States, Desmond [2012] and Hendrickson et al. [2018] give examples from cities and small
towns, respectively. For examples in developing countries, see, e.g., Hoff and Sen [2006], Jakiela and Ozier
[2016], and Munshi and Rosenzweig [2016].
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forego favor exchange and rely on monetary exchange to meet its needs. Because wealthier

households are less reliant on favor exchange, they are less willing to repay past support and

so are less able to exchange favors with their neighbors.

This “too big for their boots” effect resonates with classic ethnographic work on left-

behind communities. In a seminal exploration of favor exchange in a low-wealth United

States community, Stack [1975] notices that the wealthiest members of the community are

most at risk of being excluded from exchange:

“Members of second-generation welfare families have calculated the risk of
giving. As people say, ‘The poorer you are, the more likely you are to pay back.’
This criterion often determines which kin and friends are actively recruited into
exchange networks.” - p. 43

Stack’s observation is that wealthier members are excluded from favor exchange because

they can more easily leave the community.

Our main result identifies how this effect shapes investment dynamics andwealth accu-

mulation. We show that households in the community are forced to trade off future wealth

against current favor exchange. This trade-off results in sharply limited wealth accumu-

lation, and in some cases, even strictly decreasing wealth. This result explains why favor

exchange is ubiquitous inside communities but does not translate to significant wealth ac-

cumulation. It is also consistent with recent empirical evidence documenting that one-time

transfers typically have limited to no impact on their recipient’s long-term wealth (Ananth

et al. 2007, Karlan et al. 2019, Balboni et al. 2020).

This result implies that broader economic changes will impact left-behind communities in

nuanced and sometimes counter-productive ways. Over the past two decades, productivity in

the most productive metropolitan areas has grown relative to the rest of the country (Parilla

and Muro 2017). Using numerical simulations, we show that increasing productivity outside

of a left-behind community undermines favor exchange within it, resulting in lower consump-

tion and lower wealth. Expanding investment opportunities can similarly undermine favor

exchange and so decrease long-term wealth in these communities.
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We apply this framework to shed light on the policy debate around how to help left-

behind communities. Two widely discussed policies are (i) “place-based” policies that provide

benefits within the community, and (ii) “mobility-based” policies that encourage households

to leave the community.2 Using numerical simulations, we show that place-based policies

mitigate the “too big for their boots” effect and so have the potential to simultaneously

encourage favor exchange and wealth accumulation. In contrast, mobility-based policies

help those who leave the community, but at the cost of discouraging investment among

those who remain.

The contribution of this paper is to explore how favor exchange influences wealth dy-

namics. Those dynamics occur in the shadow of anonymous monetary exchange, so we are

related to papers that study the interaction between formal and informal markets (Kranton

1996, Banerjee and Newman 1998, Gagnon and Goyal 2017, Banerjee et al. 2018, Jackson

and Xing 2019). Relative to this literature, we explicitly model wealth accumulation and, by

doing so, uncover a trade off between future wealth and current favor exchange that limits

wealth accumulation in communities. This focus on wealth dynamics separates us from other

papers that study how communities distort decision-making (Austen-Smith and Fryer 2005,

Hoff and Sen 2006).

Our model draws on the relational contracting literature (Macaulay 1963, Bull 1987,

Levin 2003, Malcomson 2013), especially papers that consider the role of outside options

(Baker et al. 1994, Kovrijnykh 2013). We contribute to this literature by introducing an

endogenous state variable, wealth, and by modeling anonymous monetary exhange as an

alternative to long-term relationships. Our focus on favor exchange is related to papers

that study cooperation in networks (Wolitzky 2013, Ali and Miller 2016, 2018, Miller and

Tan 2018, Jackson et al. 2012), although we abstract from questions of network structure to

instead focus on wealth dynamics.

2See, e.g., Austin et al. [2018] and Bartik [2020] for recent overviews of place-based policies, and Katz et al.
[2001] and Chetty et al. [2016] for detailed studies of a mobility-based policy, the “Moving to Opportunity”
program.
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Our main result is that wealth crowds out favor exchange, therefore discouraging invest-

ment. The classic explanation for under-investment is that investments entail fixed costs and

so are inaccessible to low-wealth households (e.g., Nelson 1956). Even community support

might not be enough to overcome these fixed costs, since commitment problems can prevent

households from pooling their resources (Advani 2019). While this explanation is compelling

when investment entails fixed costs, recent work has documented under-investment even

without such fixed costs (Karlan et al. 2019; Balboni et al. 2020). Existing explanations for

under-investment in the absence of fixed costs rely on either behavioral preferences (Bern-

heim et al. 2015; Banerjee and Mullainathan 2010) or incomplete and monopolistic capital

markets (Mookherjee and Ray 2002; Liu and Roth 2019). We offer a different explanation

that requires neither behavioral preferences nor capital-market imperfections, which is that

investment entails substantial hidden costs because it undermines favor exchange. We show

that once we account for these hidden costs, even seemingly high-return investments can

have negative returns.

The idea that money eases commitment problems dates to Jevons [1875]’s argument that

money solves the “double coincidence of wants.” Prendergast and Stole [1999, 2000] build

on this idea to compare market and barter economies. We build on a related idea to explore

wealth dynamics.

2 Model

A long-lived household (“it”) has discount factor δ ∈ (0, 1) and initial wealth w0 > 0.

The household starts in the community. At the beginning of each period t ∈ {0, 1, ...}, if

the household still lives in the community, it can choose to stay or to move to a city. A

household in the city remains there forever.

If the household is in the community in period t, then it plays the following commu-

nity game with a short-lived neighbor t (“she”), who represents another member of the
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community:

1. The household requests a consumption level ct > 0 and offers a payment pt ∈ [0, wt] in

exchange. The payment cannot exceed the household’s wealth, pt ≤ wt.

2. Neighbor t accepts or rejects this exchange, dt ∈ {1, 0}. If she accepts (dt = 1), then

she receives pt and incurs the cost of providing ct. If she rejects (dt = 0), then no trade

occurs.

3. The household decides how much of a favor, ft > 0, to perform for neighbor t. The

household incurs the cost of providing ft.

4. The household invests its remaining wealth, wt − ptdt, to generate wt+1. Let R(·) give

the return on investment, so that

wt+1 = R(wt − ptdt).

Let U(·) be the household’s consumption utility in the community. The household’s period-t

payoff is πt = U(ctdt)−ft. Neighbor t’s payoff is (pt − ct) dt+ft. The community is tight-knit

and so interactions are observed by all neighbors.

We assume that consumption utility U(·) and investment returns R(·) are strictly increas-

ing and strictly concave, with U ′′(·) and R′(·) continuous, R(0) = U(0) = 0, limc↓0 U
′(c) = ∞,

and limc→∞ U ′(c) = 0. We say that investment generates positive returns at wealth w if

R′(w) > 1
δ
. We assume that R′(w) > 1

δ
for w < w̄ and R′(w) = 1

δ
for w > w̄, so that

investment generates positive returns at all wealth levels and strictly so below a threshold

w̄ > 0.

If the household has moved to the city by period t, then it plays the city game with a

short-lived vendor t (“she”), who has the same actions and payoff as neighbor t. The city

game is identical to the community game in all but two ways. First, each vendor observes

only her own interaction with the household, so that interactions are anonymous in the city.
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Second, the household’s consumption utility in the city is Û(·) instead of U(·), so that the

household’s period-t payoff is πt = Û(ctdt)− ft. Our result holds as long as consumption in

the city has weakly higher marginal utility than that in the community. Thus, we assume

that Û(·) satisfies the same regularity conditions as U(·), with Û ′(c) ≥ U ′(c) for all c > 0.

The household’s continuation payoff in period t is

Πt ≡ (1− δ)

∞
∑

s=t

δs−tπs.

We characterize household-optimal equilibria, which are the Perfect Bayesian Equilibria that

maximize the household’s ex ante expected payoff. Without loss of generality, we assume

that the household leaves the community if it is indifferent between staying and leaving.

The following assumption ensures that in equilibrium, households that stay in the com-

munity have access to strictly positive-return investments.

Assumption 1 Define c̄ > 0 as the solution to U
′

(c̄) = 1. Then, R(w̄ − c̄) > w̄.

In the context of the low-income midwestern community described by Stack [1975], the

household and neighbors are members of a left-behind community called “the Flats.” Mem-

bers of the Flats exchange food, clothing, childcare, and other goods and services (ct). To

compensate one another, households can pay one another with money (pt), but they can also

promise to repay a past favor with a future favor. For example, the recipient of childcare

(ct > 0) might promise to reciprocate with future childcare (ft > 0). As in our model, while

these favors are costly to the provider, they are in-kind and so do not require any wealth.

Households accumulate wealth (R(·)) by repaying high-interest debt or making other high-

return investments. The Flats is a tight-knit community and “everyone knows who is working,

when welfare checks arrive, and when additional resources are available” (p.37), as well as

who has failed to repay past favors. Households in the Flats can move to a nearby city,

Chicago, which harbors greater opportunities (Û ′ ≥ U ′) but separates households from their

favor-exchange networks.
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In Online Appendix B, we show that our main takeaways are robust to relaxing either

of the following two assumptions. First, rather than assuming that moving to the city is

irreversible, we allow the household to return to the community after leaving. Second, we

allow the household’s cost of providing favor ft to be convex rather than linear.

In our model, the city serves as an alternative to the community. We include the city to

match our applications, which typically include mobility across locations, and to study place-

based and mobility-based policies. However, similar wealth dynamics would arise without a

city; wealth would still crowd out favor exchange, because even in the community, wealthier

households rely more on monetary exchange and less on favor exchange. In particular, our

main result holds if we eliminate the city and instead assume that any deviation is punished

by reversion to a Markov Perfect Equilibrium in the community.

3 Life in the City

We first characterize wealth dynamics in the city. A household in the city faces a standard

consumption-investment problem, takes full advantage of investment opportunities, and ac-

cumulates wealth.

Interactions are anonymous in the city, so ft = 0 in equilibrium. Vendor t is therefore

willing to accept an offer only if the payment covers her costs (i.e., pt ≥ ct), and strictly

prefers to do so if pt > ct. Consequently, every equilibrium entails pt = ct in every t > 0, so

that wt+1 = R(wt − ct). For a household with wealth w, the resulting optimal consumption

and payoff are given by:

Ĉ(w) ∈ arg max
c∈[0,w]

(

(1− δ)Û(c) + δΠ̂ (R (w − c))
)

and

Π̂(w) = max
c∈[0,w]

(

(1− δ)Û(c) + δΠ̂ (R (w − c))
)

.

Our first result shows that Π̂(w) and Ĉ(w) are the unique equilibrium outcome in the city.
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Proposition 1 Both Π̂(·) and Ĉ(·) are strictly increasing, with Π̂(·) continuous. In any

equilibrium, Πt = Π̂(wt) and ct = Ĉ(wt) in any t ≥ 0, with (wt)
∞
t=0 increasing and

lim
t→∞

wt > w̄

on the equilibrium path.

The proof of Proposition 1 is routine and relegated to Online Appendix A. Since R′(w) >

1
δ

for w < w̄, the standard Euler equation,

Û ′(Ĉ(wt)) = δR′(wt − Ĉ(wt))Û
′(Ĉ(wt+1)), ∀ t, (Euler)

implies that the household’s long-term wealth is strictly above w̄ in the city. Figure 1

simulates equilibrium outcomes in the city.3
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Figure 1: Left panel: the household’s equilibrium payoff and consumption as a function of
w; Right panel: consumption and wealth over time, starting at w = 0.006
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4 Household-Optimal Wealth Dynamics

We now present our main result, which characterizes household-optimal equilibria in the

community. Section 4.1 states this result and discusses its intuition. Section 4.2 draws out

the implications of this result with numerical comparative statics. Section 4.3 gives the

proof.

4.1 Life in the Community

Our main result identifies two reasons why wealth in the community remains substantially

below wealth in the city. First, there is a selection margin: sufficiently wealthy households

leave the community, whereas poorer households remain. Second, there is a treatment effect:

the “too big for their boots” effect constitutes an extra cost of investment for households in

the community, resulting in sharply limited long-term wealth for those households.

To understand our main result, note that the community’s sole advantage over the city

is that neighbors can observe and punish a household which reneges on ft > 0. Therefore,

the household can credibly promise ft > 0 to repay neighbor t for providing a consumption

level, ct, that strictly exceeds the payment, pt. Consequently, favor exchange can augment

consumption only in the community.

The opportunity to engage in favor exchange is most attractive to low-wealth households,

which would otherwise have low consumption and a high marginal utility of consumption.

Conversely, wealthy households already consume a lot, so their marginal utility from further

increasing ct is low. Consequently, wealthy households leave the community while low-wealth

households stay, giving us our selection margin.

To understand the treatment effect, consider a household with wealth wt that stays in

the community, consumes ct, and invests It ≡ wt − pt. As in the standard Euler equation

(Euler), increasing investment It allows for higher future consumption, which has marginal

benefit U ′(ct+1)R
′(It), at the cost of lower current consumption, which has marginal cost
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U ′(ct).

In the community, this familiar trade-off is augmented by a second, indirect cost of

investment. Since the household can always renege on ft, leave, and earn Π̂(R(It)) in the

city, the maximum favor that can be sustained in equilibrium depends on It. Denoting the

household’s on-path continuation payoff, from staying in the community next period, by

Π∗(R(It)), ft must satisfy the following dynamic enforcement constraint:

ft ≤ f̄(It) ≡
δ

1− δ
(Π∗(R(It))− Π̂(R(It))). (DE)

The dynamic enforcement constraint ensures that the household prefers to do the favor ft

and earn continuation surplus Π∗(R(It)), rather than reneging on ft and earning punishment

payoff Π̂(R(It)). Investment It therefore determines the maximum favor that can be sus-

tained in equilibrium, f̄(It). If (DE) binds, then changing It affects the size of the favor, ft,

which affects period-t consumption because ct = pt+ ft. Assuming that f̄(·) is differentiable

and (DE) binds, the marginal indirect cost of investment is f̄ ′(It) (U
′(ct)− 1), where the first

term represents how a change in investment, It, affects the favor, ft, and the second term

represents how a change in ft affects the household’s period-t payoff, U(ct)− ft.

In a household-optimal equilibrium, the marginal costs of investment must equal its

marginal benefit, resulting in the following modified Euler equation:

U ′(ct) = δR′(It)U
′(ct+1) + f̄ ′(It) (U

′(ct)− 1) . (modEuler)

The “too big for their boots” effect holds whenever f̄ ′(It) < 0, so that investment crowds

out favor exchange. We will show that U ′(ct)− 1 > 0 for any household in the community.

Consequently, whenever the “too big for their boots” effect holds, investment in the commu-

nity is strictly below the investment that would satisfy the standard Euler equation, (Euler).

This is the sense in which the household under-invests.

This intuition elides a key complication: f̄(·) depends on both Π∗(·) and Π̂(·), which in
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turn depend on the household’s future consumption, favor-exchange, and investment deci-

sions. Wealth affects all of these decisions, rendering a full characterization of household-

optimal equilibria intractable.

Our main result, Proposition 2, focuses on the selection and treatment effects. Selection

is summarized by a wealth level, wse < w̄, such that the household leaves the community

whenever wt ≥ wse, and a set W ⊆ [0, wse] such that the household stays forever whenever

w0 ∈ W. Treatment is summarized by a wealth level, wtr < wse, such that the long-term

wealth of a household in the community is below wtr.

Proposition 2 Impose Assumption 1. There exist wealth levels wtr < wse ∈ (0, w̄) and

a positive-measure set W ⊆ [0, wse] with supW = wse such that in any household-optimal

equilibrium:

1. Selection. The household stays in the community forever if w0 ∈ W, and otherwise

leaves in t = 0.

2. Treatment. If the household stays in the community, then (wt)
∞
t=0 is monotone, with

lim
t→∞

wt 6 wtr.

Moreover, W ∩ [wtr, wse] has positive measure.

Section 4.3 gives the proof of this result. To see the intuition, we have already argued

that wealthy households leave the community while some poorer households stay. Any

household that stays, stays forever, since otherwise favor exchange would unravel from the

household’s last interaction within the community. This gives us a wealth level wse above

which households leave, and a set W of poorer households that stay forever.

Now, consider a household that stays with wealth just below wse. Such a household is

close to indifferent between leaving and staying. Thus, if the household’s wealth always

remains near wse, then the right-hand side of (DE) is always close to 0, so ft ≈ 0 in every
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t ≥ 0. Since staying is optimal only if ft ≫ 0 in some t, this household prefers to stay only if

it under-invests so severely that its wealth decreases. The proof of Proposition 2 strengthens

this result by showing that (wt)
∞
t=0 is monotone and that a positive measure of households,

W∩ [wtr, wse], stay in the community. For these households, wealth declines to a level below

wtr.
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Figure 2: Simulated household-optimal equilibrium payoffs and wealth dynamics

Figure 2 summarizes Proposition 2. In this simulation, the household moves to the city

if w0 > wse and otherwise stays. Among those that stay, households with w0 ≤ wtr grow

their wealth, but only to wtr. Those with w0 ∈ (wtr, wse) have declining wealth over time.

One policy implication of this result is that one-time transfers do not necessarily improve

long-term wealth. Consider a policy that pays a one-time transfer to the household. If this

transfer is small enough that wt < wse, then long-term wealth is completely unaffected; it

remains wtr. This result resonates with Karlan et al. [2019], which finds that temporary

debt relief tends not to improve long-term solvency. In contrast, a transfer large enough to

result in wt ≥ wse induces further investment, but only by spurring the household to leave

the community.
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4.2 Numerical Comparative Statics

This section builds on Proposition 2 to explore how changes in the economic context can

have nuanced and non-monotonic effects on equilibrium wealth and welfare.

Π∗(w)

w
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.085

.062
.06wsewtrwsewtr

Π∗(w)

w
0

.08

.062
.06

higher Û
lower Û

wsewtr wsewtr

Figure 3: Simulated comparative statics with respect to R(·) and Û(·)

The left panel of Figure 3 illustrates the effect of an increase in investment returns,

R(·). In the city, a household benefits from higher R(·) regardless of its initial wealth.

In contrast, the impact of increasing R(·) on the community can be unevenly distributed

among its poorer and wealthier members. Increasing R(·) increases the household’s payoff

from leaving, which tightens the dynamic enforcement constraint, (DE), and so undermines

favor exchange in the community. This negative impact is larger for wealthier households,

for whom (DE) is more stringent. For less-wealthy households, this negative effect is smaller

and so can be outweighed by the ability to grow wealth more quickly. Thus, poorer members

of the community benefit, wealthier members can be harmed, and long-term wealth in the

community, wtr, decreases.

The right panel of Figure 3 considers the effect of an increase in productivity in the city,

which we model as an increase in consumption utility in the city, Û(·). Over the past two

decades, productivity has diverged across locations in the United States, with the most pro-

ductive metropolitan areas growing even more productive relative to the rest of the country

(Parilla and Muro 2017). This numerical simulation shows that such productivity improve-

ments can reduce both welfare and long-term wealth in the community. While nothing mate-
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rial has changed within the community, increased productivity outside the community leads

to a higher outside option, which depresses both favor exchange and wealth accumulation.

The same simulation implies that households with especially bad outside options might be

able to accumulate more wealth. Consistent with this implication, Portes and Sensenbrenner

[1993] details significant wealth accumulation within the Dominican immigrant community

in New York and argues that one reason for this success is that these households face limited

outside opportunities.

4.3 The Proof of Proposition 2

Let Π∗(w) be the maximum equilibrium payoff of a household with wealth w. Define

Πc(w) ≡ maxc≥0,f≥0 {(1− δ)(U(c)− f) + δΠ∗(R(w + f − c))}

s.t. 0 ≤ c− f ≤ w (1)

f ≤ δ

1− δ

(

Π∗(R(w + f − c))− Π̂(R(w + f − c))
)

. (2)

We show that Πc(w) is the household’s maximum payoff conditional on staying in the com-

munity in the current period. Hence, the household’s maximum equilibrium payoff, Π∗(w),

is the maximum of Π̂(w) and Πc(w).

Lemma 1 The household’s maximum equilibrium payoff is Π∗(w0) = max
{

Π̂(w0),Πc(w0)
}

,

where Πc(·) and Π∗(·) are strictly increasing.

Proof of Lemma 1: We show that Πc(·) is the household’s maximum equilibrium payoff

conditional on staying in the community in the current period. In any equilibrium, neighbor

0 accepts only if c0 ≤ p0+f0. The household’s continuation payoff is at most Π∗(R(w0−p0))

and at least Π̂(R(w0 − p0)). Hence, it is willing to do favor f0 only if

f0 ≤
δ

1− δ

(

Π∗(R(w0 − p0))− Π̂(R(w0 − p0))
)

.
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Setting c0 = p0+f0 yields Πc(w0) as an upper bound on the household’s payoff from staying.

This bound is tight. For any (c0, f0) that satisfies (1) and (2), it is an equilibrium

to set p0 = c0 − f0 ≥ 0, play a household-optimal continuation equilibrium on-path, and

respond to any deviation with the household leaving and ft = 0 in all future periods.4 Thus,

Πc(·) is the household’s maximum equilibrium payoff conditional on staying. It follows that

Π∗(w) = max{Π̂(w),Πc(w)}. Since Πc(·) is strictly increasing by inspection and Π̂(·) is

strictly increasing by Proposition 1, Π∗(·) is strictly increasing. �

The next three lemmas characterize household-optimal equilibria in the community.

First, we show that households that stay in the community, stay forever.

Lemma 2 If w0 ≥ 0 is such that Π∗(w0) > Π̂(w0), then in any t ≥ 0 of any household-

optimal equilibrium, Π∗(wt) > Π̂(wt) on the equilibrium path.

Proof of Lemma 2: Suppose t > 0 is the first period in which Π∗(wt) = Π̂(wt), so

Π∗(wt−1) = Πc(wt−1) > Π̂(wt−1). Let {ct−1, ft−1} achieve Πc(wt−1). Since Π∗(wt) = Π̂(wt),

(2) implies ft−1 = 0. If the household exits in t − 1, its payoff Π̂(wt−1) from living in the

city is at least Πc(wt−1), since it can choose the same ct−1 and earn continuation payoff

Π̂(wt) = Π∗(wt). This contradicts the presumption that Πc(wt−1) > Π̂(wt−1). �

Second, we show that wealthy households leave the community, while poorer households

stay.

Lemma 3 The set W ≡
{

w : Π∗(w) > Π̂(w)
}

has positive measure. Moreover,

wse ≡ sup
{

w : Π∗(w) > Π̂(w)
}

satisfies 0 < wse < w̄.

Proof of Lemma 3: First, we show that Π∗(0) > Π̂(0) = 0. Because limc↓0 U
′(c) = ∞,

there exists a c > 0 such that c ≤ δU(c). Suppose that in all t ≥ 0, ft = ct = c and pt = 0

on the equilibrium path, so the household’s equilibrium payoff is U(c) − c. Any deviation

is punished by ft = 0 in all future periods and the household immediately exiting. This

4If ft = 0 in all t ≥ 0, then the household is willing to leave because U ≤ Û .
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strategy delivers a strictly positive payoff. It is an equilibrium because c ≤ δU(c) implies

(2). Thus, Π∗(0) > 0. Since Π∗(w) is increasing and Π̂(w) is continuous, there exists an open

interval around 0 such that Π∗(w) > Π̂(w). So
{

w : Π∗(w) > Π̂(w)
}

has positive measure.

Next, we show that wse < w̄. Let c̄ satisfy U ′(c̄) = 1, and let w0 be such that Π∗(w0) >

Π̂(w0). By Lemma 2, Π∗(wt) > Π̂(wt) in any t ≥ 0 of any household-optimal equilibrium.

Suppose that ct > c̄ in period t ≥ 0. If ft > 0, then we can perturb the equilibrium by

decreasing ct and ft by ǫ > 0, which increases the household’s payoff at rate 1− U ′(ct) > 0

as ǫ → 0. So, ft = 0.

Let τ > t be the first period after t such that fτ > 0. Consider decreasing pt and ct

by ǫ > 0, increasing pτ by χ(ǫ), and decreasing fτ by χ(ǫ), where χ(ǫ) is chosen so that

wτ+1 remains constant. Then, χ(ǫ) ≥ ǫ
δτ−t because R′(·) ≥ 1

δ
. As ǫ → 0, this perturbation

increases the household’s payoff by at least δτ−t 1
δτ−t

−U ′(ct) > 0. It is an equilibrium because

fs = 0 for all s ∈ [t, τ − 1], so (2) still holds in these periods.

The above argument implies that if ct > c̄, then fτ = 0 for all τ ≥ t. But then Π∗(wt) ≤

Π̂(wt), contradicting Lemma 2. Therefore, if Π∗(w0) > Π̂(w0), then ct ≤ c̄ in every t ≥ 0 and

so Π∗(w0) ≤ U(c̄). Since R(w̄ − c̄) > w̄ by Assumption 1, Π∗(w̄) ≥ Π̂(w̄) > Û(c̄) ≥ U(c̄).

By the definition of wse, there exists a sequence of initial wealth levels in W which are

arbitrarily close to wse such that the household strictly prefer to stay in the community with

those initial wealth levels. If wse ≥ w̄, the equilibrium payoffs at those initial wealth levels

would be strictly above U(c̄) due to the continuity of Π̂(w). This leads to a contradiction so

wse < w̄. �

Finally, we show that household-optimal equilibria exhibit monotone wealth dynamics.

Lemma 4 In any household-optimal equilibrium, (wt)
∞
t=0 is monotone.

The (tedious) proof of Lemma 4 is relegated to Appendix A. The key step of this proof

shows that household-optimal investment, wt − pt, increases in wt. Thus, if w1 ≥ w0, then

w2 = R(w1 − p1) ≥ R(w0 − p0) = w1 and so on, and similarly if w1 ≤ w0.
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We can now prove Proposition 2. Selection is implied by Lemma 2 and Lemma 3. For

treatment, define

c̃(w) = w − R−1(w)

and Π̃(w) = U(c̃(w)). Since wse < w̄ by Lemma 3, the consumption c̃(wse) does not satisfy

the Euler equation (Euler). Thus, there exists K > 0 such that

Π̃(wse) +K < Π̂(wse).

Define

f̄(w) =
δ

1− δ

(

Π̂(wse)− Π̂(w)
)

and

p̄(w) = wse − R−1(w).

Consider w0 < wse such that Π∗(w) > Π̂(w), and suppose that there exists an equilibrium in

which (wt)
∞
t=0 is increasing on the equilibrium path. We claim that pt ≤ p̄(w0) and ft ≤ f̄(w0)

in every t ≥ 0. Indeed,

ft ≤
δ

1− δ

(

Π∗(wt+1)− Π̂(wt+1)
)

≤ δ

1− δ

(

Π∗(wse)− Π̂(w0)
)

= f̄(w0),

and

pt = wt −R−1(wt+1) ≤ wse − R−1(w0) = p̄(w0),

where the inequalities hold because (i) wt, wt+1 ≤ wse by Lemma 2, and (ii) wt+1 ≥ w0 by

our presumption that (wt)
∞
t=0 is increasing.

Since ct ≤ pt + ft, the household’s payoff satisfies

Π∗(w0) ≤ U
(

p̄(w0) + f̄(w0)
)

≡ H(w0).
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The function H(w0) is continuous and decreasing in w0, with H(wse) = Π̃(wse). Since

Π̃(wse) +K < Π̂(wse), there exists wtr < wse such that for any w0 ∈ (wtr, wse),

H(w0) < Π̂(w0).

Therefore, for any w0 ∈ (wtr, wse), if w0 ∈ W, then (wt)
∞
t=0 must be strictly decreasing, with

limt→∞ wt ≤ wtr.

By definition of wse, there exists w0 ∈ W ∩ (wtr, wse) such that Π∗(w0) > Π̂(w0). Since

Π∗(·) and Π̂(·) are increasing, with Π̂(·) continuous, we conclude that Π∗(w) > Π̂(w) on a

neighborhood around w0. �

5 Policy Simulations

This section considers policies to help left-behind communities. Our main takeaway is that

place-based policies, which include local grants, tax incentives, infrastructure investments,

and other policies that benefit those who stay in a community (Austin et al. 2018, Bartik

2020), have outsized benefits in left-behind communities. These policies can mitigate the

“too big for their boots” effect and so encourage both favor exchange and investment within

the community.

We contrast place-based policies with two alternative policy approaches. Income-based

policies provide benefits that depend only on a household’s income. Many assistance pro-

grams in the United States, including the Temporary Assistance for Needy Families program,

are essentially income-based. The other alternative is mobility-based policies, which en-

courage households to leave left-behind communities. One example is the “Moving to Oppor-

tunity” program in the United States, which provides housing subsidies in higher-opportunity

areas (Katz et al. 2001, Chetty et al. 2016).

Figure 4 presents simulations of these three policy approaches. To facilitate comparison,

we model each policy as increasing the household’s per-period utility, where mobility-, place-,
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Figure 4: Simulated effects of income-, mobility-, and place-based policies.

and income-based policies respectively increase utility in the city, in the community, or in

both locations. These simulations assume that following a deviation, players play a Markov

Perfect Equilibrium.5

Income-based policies do not affect the household’s relative payoff from the city versus

from the community, resulting in a uniform increase in equilibrium payoffs. Thus, such

policies affect neither selection nor treatment effects. In contrast, both mobility- and place-

based policies affect the relative attractiveness of the city, which influences both selection

and treatment effects.

Mobility-based policies increase equilibrium payoffs in the city, which encourages house-

holds to leave, leading to a lower wse. Households that remain in the community post-policy

are strictly worse off; they face a higher outside option, which tightens the dynamic en-

forcement constraint (DE), exacerbates the “too big for their boots” effect, and decreases

the long-term wealth limit in the community, wtr. Note that mobility-based policies have

identical effects as increasing productivity in the city, as in right panel of Figure 3.

Place-based policies, in contrast, increase the relative value of staying in the community,

5For income- and mobility-based policies, the optimal penal code is indeed Markov. For place-based
policies, the restriction to Markov Perfect Equilibrium off-path gives us an upper bound on punishment
payoffs and hence a lower bound on the household’s optimal equilibrium payoff in the community.
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which relaxes (DE) and so mitigates the “too big for their boots” effect. Thus, place-based

policies encourage both favor exchange and investment, leading to higher wse and wtr. Such

policies are therefore especially effective at helping left-behind communities. By encouraging

investment, these policies also help left-behind communities catch up, resulting in less long-

term wealth inequality. Other benefits that are tied to the community, such as family, social,

or religious ties, can similarly encourage both wealth accumulation and favor exchange.

6 Conclusion

Helping left behind communities requires understanding the social constraints faced by those

experiencing poverty. This paper argues that wealth isolates households from community

support. Thus, while communities are an essential source of support for their members, that

support comes at the cost of lower investment and deeper long-term wealth inequality.
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A Routine Proofs

A.1 Proof of Proposition 1

Suppose that the household lives in the city. In any period t, since future vendors don’t

observe ft, the household always chooses ft = 0. Hence, vendor t accepts only if pt ≥ ct.

This means that ct ∈ [0, wt] are the feasible consumptions, so that the household’s equilibrium

continuation payoff is at most Π̂(wt) given wealth wt.

The following equilibrium gives the household an equilibrium continuation payoff of

Π̂(wt). In period t, (i) the household proposes (ct, pt) = (Ĉ(wt), Ĉ(wt)); (ii) vendor t accepts

if and only if pt ≥ ct. Vendor t has no profitable deviation. This strategy attains Π̂, so the

household has no profitable deviation either.

Let {c∗t}∞t=0 be the consumption sequence in the equilibrium above, given initial wealth

w. If w = 0, then c∗t = 0 in all t ≥ 0, so Π̂(0) = Û(0) = 0 is the unique equilibrium payoff.

If w > 0, then it must be true that c∗t > 0 in every t ≥ 0. Suppose otherwise. Let τ ≥ 0 be

the first period in which min{c∗τ , c∗τ+1} = 0 and max{c∗τ , c∗τ+1} > 0. If c∗τ > 0 and c∗τ+1 = 0,

consider the perturbation cτ = c∗τ−ǫ1, cτ+1 = c∗τ+1+ǫ2 for some small ǫ1, ǫ2 > 0 such that the

wealth wτ+2 stays the same. If c∗τ = 0 and c∗τ+1 > 0, consider the perturbation cτ = c∗τ + ǫ1,

cτ+1 = c∗τ+1−ǫ2 for some small ǫ1, ǫ2 > 0 such that the wealth wτ+2 stays the same. In either

case, the perturbation gives a strictly higher payoff, since limc↓0 Û
′(c) = ∞.

Next, we show that Π̂(w) is the household’s unique equilibrium payoff. At w = 0,

Π̂(0) = 0, so the household’s unique equilibrium payoff is indeed Π̂(0). For w > 0, the

household can choose (ct, pt) = ((1− ǫ)c∗t , c
∗
t ) in every t ≥ 0 for ǫ > 0 small. Vendor t strictly

prefers to accept. As ǫ ↓ 0 , the consumption sequence {(1− ǫ)c∗t}∞t=0 gives the household a

payoff that converges to Π̂(w). So the household must earn at least Π̂(w) in any equilibrium.

Turning to properties of Π̂(·), we claim that Π̂(·) is strictly increasing. Pick 0 ≤ w < w̃.

Let {c∗t}∞t=0 be the sequence associated with w. If the initial wealth is w̃, it is feasible to

choose c0 = c∗0 + w̃−w and ct = c∗t for t ≥ 1. Since Û(·) is strictly increasing, so too is Π̂(·).
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It remains to show that Π̂(·) is continuous for all w > 0. If w > 0, then Ĉ(w) > 0. For

w̃ sufficiently close to w, setting c0 = Ĉ(w) + (w̃ − w) and ct = Ĉ(wt) for t ≥ 1 is feasible.

The household’s payoffs converge to Π̂(w) as w̃ → w under this perturbation, which means

that limw̃↑w Π̂(w̃) ≥ Π̂(w) and limw̃↓w Π̂(w̃) ≥ Π̂(w). Since Π̂(·) is increasing, we conclude

that Π̂(·) is continuous at every w > 0.

We now show that Π̂(·) is continuous at w = 0. Consider limw↓0 Π̂(w). Since R′(w̄) = 1
δ
,

the line tangent to R(·) at w̄ is R̂(w) = R(w̄) + w−w̄
δ

. Since R(·) is concave, R(w) ≤ R̂(w)

for all w ≥ 0. Therefore, Π̂(w) is bounded from above by the household’s maximum payoff

if we replace R(·) with R̂(·). For consumption path {ct}∞t=0 to be feasible under R̂(·), it must

satisfy

(1− δ)

∞
∑

t=0

δtct ≤ (1− δ)w0 + δR(w̄)− w̄.

This means that the payoff of a household with initial wealth w0 is at most

Û((1− δ)w0 + δR(w̄)− w̄).

Pick any small ǫ > 0. There exists T < ∞ and sufficiently small w0 > 0 such that

δT Û
(

(1− δ)RT (w0) + δR(w̄)− w̄
)

<
ǫ

2
,

where RT (w0) denotes the function that applies R(·) T -times to w0.

Consider a hypothetical setting that is more favorable to the household: we allow the

household to both consume and save her wealth until period T , after which she must play

the original city game. The household’s payoff from this hypothetical is strictly larger than

Π̂(w0) and is bounded from above by

(1− δ)

T−1
∑

t=0

δt(Û(Rt(w0)) + δT Û((1− δ)RT (w0) + δR(w̄)− w̄).

28



As w0 ↓ 0, RT (w0) ↓ 0, so Rt(w0) ↓ 0 for any t < T . Thus,

Π̂(w0) ≤ (1− δ)

T−1
∑

t=0

δtÛ(Rt(w0)) + δT Û((1− δ)RT (w0) + δR(w̄)− w̄) < ǫ.

This is true for any ǫ > 0, so limw↓0 Π̂(w) = 0.

Finally, consider any equilibrium in the city. If w0 = 0, then wt = 0 in any t ≥ 0. If

w0 > 0, then we have shown that ct > 0 in every t ≥ 0, so wt > ct > 0. A standard argument

(see below) implies the following Euler equation:

Û ′(ct) = δR′(wt − ct)Û
′(ct+1). (3)

Together with R′(·) ≥ 1
δ

and Û(·) strictly concave, (3) implies ct ≤ ct+1, and strictly so if

wt < w̄.

Next, we argue that Ĉ(·) is strictly increasing in w. Let {ct}∞t=0 and {c̃t}∞t=0 be the

equilibrium consumption sequences for w > 0 and w̃ > w, respectively. Suppose c0 ≥ c̃0,

and let τ ≥ 1 be the first period such that ct < c̃t, which must exist because Π̂(·) is strictly

increasing. Then, cτ−1 ≥ c̃τ−1, wτ−1 − cτ−1 < w̃τ−1 − c̃τ−1, and cτ < c̃τ , so at least one

of (cτ−1, wτ−1, cτ ) and (c̃τ−1, w̃τ−1, c̃τ ) violates (3). Hence, Ĉ(w) is strictly increasing in w.

Therefore, ct+1 ≥ ct implies wt+1 ≥ wt, with strict inequalities if wt ≤ w̄.

Since (wt)
∞
t=0 is monotone, it converges on R+ ∪ {∞}. Suppose limt→∞ wt ≤ w̄. Since

ct = wt − R−1(wt+1), (ct)
∞
t=0 converges as well. Then, R′(wt − ct) converges to a number

strictly above 1
δ
. Hence, (3) is violated as t → ∞. We conclude that limt→∞wt > w̄. �

A.2 Deriving the Euler Equation

Consider a household in the city, and let its optimal consumption and wealth sequence be

{c∗t , w∗
t }∞t=0. We prove that if w0 > 0, then

Û ′(c∗t ) = δR′(w∗
t − c∗t )Û

′(c∗t+1)

29



in every t ≥ 0.

The proof of Proposition 1 says that c∗t > 0, c∗t+1 > 0, and w∗
t − c∗t > 0. Suppose that

Û ′(c∗t ) > δR′(w∗
t − c∗t )Û

′(c∗t+1). Then, we can perturb (c∗t , c
∗
t+1) to (c∗t + ǫ, c∗t+1 − χ(ǫ)), where

χ(ǫ) is chosen such that w∗
t+2 remains the same as before the perturbation. In particular,

R(w∗
t − (c∗t + ǫ))− (c∗t+1 − χ(ǫ)) = R(w∗

t − c∗t )− c∗t+1.

Hence, χ′(ǫ) = R′(w∗
t − (c∗t + ǫ)).

As ǫ ↓ 0, this perturbation strictly increases the household’s payoff:

lim
ǫ↓0

{

Û ′(c∗t + ǫ)− δÛ ′(c∗t+1 − χ(ǫ))χ′(ǫ)
}

= lim
ǫ↓0

{

Û ′(c∗t + ǫ)− δÛ ′(c∗t+1 − χ(ǫ))R′(w∗
t − c∗t − ǫ)

}

= Û ′(c∗t ) + δR′(w∗
t − c∗t )Û

′(c∗t+1) > 0.

This contradicts the fact that (c∗t , c
∗
t+1) is optimal. Using a similar argument, we can show

that Û ′(c∗t ) < δR′(w∗
t − c∗t )Û

′(c∗t+1) is not possible either. �

A.3 Proof of Lemma 4

We break the proof of this lemma into four steps.

A.3.1 Step 1: Locally Bounding the Slope of Π∗(·) From Below

We claim that for any w ∈ [0, wse), there exists ǫw > 0 such that for any ǫ ∈ (0, ǫw),

Π∗(w + ǫ)− Π∗(w) > (1− δ)ǫ.

First, suppose Π̂(w) ≥ Πc(w), and let {wt, ct}∞t=0 be the wealth and consumption se-

quences if the household enters the city. The proof of Lemma 3 implies that for any w0 < wse,

R(w0− c̄) < w0. Proposition 1 says that {wt}∞t=0 is increasing, so c0 < c̄. Hence, there exists

ǫw > 0 such that U ′(c0 + ǫw) > 1. Since Û ′(c) ≥ U ′(c) for all c > 0, Û ′(c0 + ǫw) > 1.
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For any ǫ < ǫw, if w0 = w+ǫ, then the household can enter the city and choose ĉ0 = c0+ǫ,

with ĉt = ct in all t > 0. We can bound Π∗(w+ǫ) from below by the payoff from this strategy,

Π∗(w + ǫ) ≥ (1− δ)
(

Û(c0 + ǫ)− Û(c0)
)

+ Π̂(w) > (1− δ)ǫ+ Π̂(w) = (1− δ)ǫ+Π∗(w).

We conclude that Π∗(w + ǫ)−Π∗(w) > (1− δ)ǫ, as desired.

Now, suppose Π̂(w) < Πc(w). Let {wt, ct, ft}∞t=0 be the wealth, consumption, and reward

sequence in a household-optimal equilibrium. There exists τ ≥ 0 such that fτ > 0 for the first

time in period τ ; otherwise, the household could implement the same consumption sequence

in the city. Choose ǫw > 0 to satisfy ǫw < δτfτ .

For ǫ ∈ (0, ǫw) and initial wealth w0 = w + ǫ, consider the perturbed strategy such that

p̂t = pt, ĉt = ct, and f̂t = ft in every period except τ . In period τ , f̂τ = fτ − ǫ
δτ

and

p̂τ = pτ + χ, where χ is chosen so that ŵt+1 = wt+1. Then, ĉτ = cτ + χ − ǫ
δτ

. Based on

the proof of Proposition 2, wt < wse for all t ≤ τ . This observation together with wse ≤ w̄

and Assumption 1, implies that we can choose a sufficiently small ǫw such that the marginal

return from capital in every t < τ is strictly higher than 1
δ

even if the inital wealth is w + ǫ

rather than w. Hence, χ > ǫ
δτ

.

Under this perturbed strategy, (2) is satisfied in all t < τ because ft = 0 in these periods;

in t = τ because f̂τ < fτ and ŵτ+1 = wτ+1; and in t > τ because play is unchanged after τ .

Moreover, fτ − ǫ
δτ

> 0 because ǫ < ǫw, and f̂τ + p̂τ = ĉτ , so this strategy is feasible. Thus, it

is an equilibrium. Consequently, Π∗(w+ ǫ) is bounded from below by the household’s payoff

from this strategy,

Π∗(w + ǫ) > (1− δ)δτ
ǫ

δτ
+ Πc(w) = (1− δ)ǫ+Π∗(w),

as desired.
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A.3.2 Step 2: Moving from Local to Global Bound on Slope

Next, we show that for any 0 ≤ w < w′ < wse, Π∗(w′)− Π∗(w) > (1− δ)(w′ − w).

Let

z(w) = sup{w′′|w < w′′ ≤ wse, and ∀w′ ∈ (w,w′′],Π∗(w′)− Π∗(w) > (1− δ)(w′ − w)}.

By Step 1, z(w) ≥ w exists. Moreover,

Π∗(z(w))−Π∗(w) ≥ lim
w̃↑z(w)

Π∗(w̃)− Π∗(w) ≥ (1− δ)(z(w)− w),

where the first inequality follows because Π∗(·) is increasing, and the second inequality follows

by definition of z(w).

Suppose that z(w) < wse. By Step 1, there exists ǫz(w) such that for any ǫ < ǫz(w),

Π∗(z(w) + ǫ)− Π∗(z(w)) > (1− δ)ǫ.

Hence,

Π∗(z(w)+ǫ)−Π∗(w) = Π∗(z(w)+ǫ)−Π∗(z(w))+Π∗(z(w))−Π∗(w) > (1−δ)ǫ+(1−δ)(z(w)−w).

This contradicts the definition of z(w), so z(w) ≥ wse.

For any w′ < wse, w′ < z(w) and so Π∗(w′)−Π∗(w) > (1− δ)(w′ − w), as desired.

A.3.3 Step 3: Investment is increasing in wealth.

Consider two wealth levels, 0 ≤ wL < wH < wse, and suppose that Πc(wL) > Π̂(wL) and

Πc(wH) > Π̂(wH). Given any household-optimal equilibria, let pH , pL be the respective

period-0 payments under wH , wL. We prove that wH − pH ≥ wL − pL. Define Ik ≡ wk − pk,

k ∈ {L,H}. Towards contradiction, suppose that IH < IL.
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We first show that cH > cL + (wH − wL). Suppose instead that cH ≤ cL + (wH − wL).

Since IH < IL, we have pH > pL + (wH − wL). But then fH < fL, since

fH = cH − pH < cH − (pL + (wH − wL)) ≤ cL + (wH − wL)− (pL + (wH − wL)) = fL.

Consider the following perturbation: p̂H = pL+(wH −wL) ∈ (pL, pH), f̂H = fH +pH − p̂H ≥

fH , and ĉH = cH . Under this perturbation, ÎH = wH − p̂H = IL. Thus, to show that the

perturbation satisfies (2), we need only show that f̂H ≤ fL. Indeed:

f̂H = fH+pH−(pL+(wH−wL)) = cH−(cL−fL)−(wH−wL) = fL+cH−(cL+wH−wL) ≤ fL,

where the final inequality holds because cH ≤ cL + (wH − wL) by assumption. Thus, this

perturbation is also an equilibrium.

We claim that a household with initial wealth wH strictly prefers this equilibrium to the

original equilibrium, which is true so long as

(1− δ)(U(cH)− f̂H) + δΠ∗(R(IL)) > (1− δ)(U(cH)− fH) + δΠ∗(R(IH))

⇐⇒ (1− δ)(f̂H − fH) < δ(Π∗(R(IL))− Π∗(R(IH)))

⇐⇒ (1− δ)(pH − p̂H) < δ(Π∗(R(IL))−Π∗(R(IH))).

We know that IL = IH+pH−p̂H . Since the household stays in the community, IH < IL < wse,

so R′(IH), R
′(IL) >

1
δ
. Thus,

R(IL)−R(IH) >
1

δ
(IL − IH) =

1

δ
(pH − p̂H).

By Step 2, Π∗(·) increases at rate strictly greater than (1− δ), so we conclude

δ(Π∗(R(IL))−Π∗(R(IH))) > δ(1− δ)
1

δ
(pH − p̂H),
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as desired. Thus, if IH < IL, then cH > cL + (wH − wL).

We are now ready to prove that IH < IL contradicts household optimality. To do so, we

consider two perturbations: one at wL and one at wH . At wH , consider setting

ĉH = cL + (wH − wL) > cL ≥ 0,

p̂H = pL + wH − wL ∈ (pL, wH],

f̂H = ĉH − p̂H = fL.

By construction, wH− p̂H = IL. Thus, f̂H satisfies (2) because fL does. Moreover, p̂H+ f̂H =

ĉH , so the neighbor is willing to accept. This perturbed strategy is therefore an equilibrium.

For the original equilibrium to be household-optimal, we must therefore have

(1− δ)(U(cH)− fH) + δΠ∗(R(IH)) ≥ (1− δ)(U(ĉH)− f̂H) + δΠ∗(R(ÎH)). (4)

At wL, consider setting

ĉL = cH − (wH − wL) > cL ≥ 0,

p̂L = pH − (wH − wL) ∈ (pL, wL]

f̂L = ĉL − p̂L = fH .

,

By construction, wL − p̂L = IH . Thus, f̂L satisfies (2) because fH does. This perturbed

strategy is again an equilibrium, so the original equilibrium is household-optimal only if

(1− δ)(U(cL)− fL) + δΠ∗(R(IL)) ≥ (1− δ)(U(ĉL)− f̂L) + δΠ∗(R(ÎL)). (5)

Combining (4) and (5) and plugging in definitions, we have

U(cH)− U(cH − (wH − wL)) ≥ U(cL + (wH − wL))− U(cL).

However, cH > cL+wH−wL and U(·) is strictly concave, so this inequality cannot hold. Thus,
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if IH < IL, then at least one of the equilibria at wH and wL cannot be household-optimal.

A.3.4 Step 4: Establishing Monotonicity

We have shown that investment, I(w), is increasing in w. Consider a household-optimal

equilibrium with w1 ≥ w0. Then, I(w1) ≥ I(w0), so w2 = R(I(w1)) ≥ R(I(w0)) = w1. Thus,

w2 ≥ w1, and wt+1 ≥ wt for all t > 1 by the same argument. Similarly, if w1 ≤ w0, then

I(w1) ≤ I(w0), w2 ≤ w1, and wt+1 ≤ wt in all t ≥ 0. We conclude that (wt)
∞
t=0 is monotone

in any household-optimal equilibrium. �

B Extensions to the Model

B.1 Reversible Exit

This appendix shows that mis-investment occurs even if the household can return to the

community after leaving for the city. Formally, we modify the game in Section 2 so that at

the start of every period while the household is in the city, it can return to the community. If

it does, then it plays the community game until it again chooses to leave for the city. Payoffs

and information structures are the same as in Section 2, and so neighbors observe all of the

household’s interactions with neighbors, while vendors observe only their own interactions.

We impose a slightly stronger version of Assumption 1.

Assumption 2 Define c̄m as the solution to Û ′(c̄m) = 1, and let ŵm satisfy R(ŵm − c̄m) =

ŵm. Then, R′(ŵm) >
1
δ
.

Under this assumption, we can prove that mis-investment occurs even if exit is reversible.

Proposition 3 Impose Assumption 2. There exists a w∗∗, a wcc < w∗∗, and a positive-

measure interval W ⊆ [0, w∗∗) such that the household permanently exits the community if

w0 /∈ W. If w0 ∈ W, then in any household-optimal equilibrium, the household is in the

community for an infinite number of periods.
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Moreover, if w0 /∈ W, then in any equilibrium,

lim
t→∞

wt > w∗∗,

while if w0 ∈ W, then for every t ≥ 0, wt < w∗∗. Moreover, wt+1 < wt whenever wt ∈

(wcc, w∗∗).

B.1.1 Proof of Proposition 3

Much like the proof of Proposition 2, we break this proof into a sequence of lemmas. We begin

by showing that the household’s worst equilibrium payoff equals Π̂(·), its worst equilibrium

payoff from the game with reversible exit.

Lemma 5 For any initial wealth w ≥ 0, the household’s worst equilibrium payoff is Π̂(·).

Proof of Lemma 5: This proof is similar to the proof of Proposition 1. It is an equilibrium

for ft = 0 in every t ≥ 0, in which case it is optimal for the household to permanently leave

the community. In the city, vendor t accepts only if pt ≥ ct. Therefore, Π̂(·) gives the

maximum equilibrium payoff if the household permanently leaves the community. But as in

the proof of Proposition 1, the household cannot earn less than Π̂(·), because vendor t must

accept whenever pt > ct. �

Now, we turn to the household’s maximum equilibrium payoff. Define Π∗∗(w) as the

maximum equilibrium payoff with initial wealth w. Define Π∗
c(·) identically to Πc(·), except

that Π∗(·) is replaced by Π∗∗(·). Define

Π∗
m(w) ≡ max

0≤c≤w

{

(1− δ)Û(c) + δΠ∗∗(R(w − c))
}

as the household’s maximum equilibrium payoff if it chooses the city in the current period.

The key difference between this model and the baseline model is that Π∗
m(·) might entail
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the household returning to the community to take advantage of relational contracts in the

future. Therefore, Π∗
m(·) ≥ Π̂(·), since the latter entails staying in the city forever.

Lemma 6 Both Π∗
c(·) and Π∗

m(·) are strictly increasing. For all w ≥ 0,

Π∗∗(w) ≡ max {Π∗
c(w),Π

∗
m(w)} .

Proof of Lemma 6: By Lemma 5, the household earns no less than Π̂(·) following a

deviation. As in Lemma 1, conditional on choosing the community in period 0, the house-

hold’s maximum equilibrium payoff equals Π∗
c(w0). If the household instead chooses the

city in period t, then ft = 0 in any equilibrium., since the continuation equilibrium is in-

dependent of ft. Thus, the household optimally sets pt = ct, so its maximum equilibrium

continuation payoff equals Π∗∗(R(w− c)). We conclude that Π∗
m(w) is the household’s max-

imum equilibrium payoff conditional on choosing the city. It then immediately follows that

Π∗∗(w) ≡ max {Π∗
c(w),Π

∗
m(w)}. Both Π∗

c(·) and Π∗
m(·) are strictly increasing by inspection.

�

Apart from some details of the proof, the next result is similar to Lemma 2.

Lemma 7 If Π∗∗(w0) > Π̂(w0), then Π∗∗(wt) > Π̂(wt) in all t ≥ 0 of any household-optimal

equilibrium.

Proof of Lemma 7: Suppose not, and let τ > 0 be the first period such that Π∗∗(wτ) =

Π̂(wτ ). In period τ − 1, (2) implies that ft = 0 if the household stays in the community.

Therefore, it is optimal for the household to leave the community in τ − 1. But then it is

optimal for the household to permanently leave the community in τ − 1, since Π∗∗(wτ ) =

Π̂(wτ ). So Π∗∗(wτ−1) = Π̂(wτ−1), contradicting the definition of τ . �

Lemma 8 Suppose that Π∗∗(w0) > Π̂(w0). Then in every t ≥ 0, Û ′(ct) ≥ 1, and there exists

τ > t such that the household stays in the community in period τ .
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Proof of Lemma 8: Towards contradiction, suppose that there exists t ≥ 0 such that

Û ′(ct) < 1, so that a fortiori, U ′(ct) < 1. If ft > 0, then we can decrease ft and ct by the

same ǫ > 0. This perturbation is also an equilibrium, and increases the household’s period-t

payoff at rate 1− Û ′(ct) > 0 as ǫ → 0. Thus, ft = 0, which implies that pt = ct > 0.

By Lemma 7, Π∗(wt+1) > Π̂(wt+1). Therefore, there exists a τ > t such that fτ > 0, since

otherwise the household could do no better than exiting the city permanently. Let τ be the

first period after t such that fτ > 0. Note that the household must be in the community in

period τ .

Consider the following perturbation: decrease pt and ct by ǫ > 0, and increase pτ and

decrease fτ by χ(ǫ), where χ(ǫ) is chosen so that wτ+1 remains constant. Then, χ(ǫ) ≥ ǫ
δτ−t

because R′(·) ≥ 1
δ
. As ǫ → 0, χ(ǫ) → 0. Hence, this perturbation is feasible for small enough

ǫ > 0. It is an equilibrium, since (2) is trivially satisfied in all t′ ∈ [t, τ − 1] because ft′ = 0

in those periods. This perturbation changes the household’s period-t continuation payoff at

rate no less than

−(1− δ)Û ′(ct) + δτ−t(1− δ)
1

δτ−t
> 0

as ǫ → 0. Thus, the original equilibrium could not have been household-optimal. �

Next, we show that the household stays in the community for sufficiently low initial

wealth levels.

Lemma 9 The set
{

w|Π∗∗(w) > Π̂(w)
}

has positive measure, with

w∗∗ ≡ sup
{

w|Π∗∗(w) > Π̂(w)
}

< ∞.

Proof of Lemma 9: The proof that
{

w|Π∗∗(w) > Π̂(w)
}

is identical to the proof in

Lemma 3, since the same constructions work at w = 0, Π∗∗(·) is increasing, and Π̂(·) is
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continuous. To prove that w∗∗ < ∞, suppose w0 is such that

R(w0 − c̄m) > w0.

For any such w0,

Π̂(w0) > Û(c̄m) ≥ Π∗∗(w0),

where the second inequality follows by Lemma 8 and the assumption that Π∗∗(w) > Π̂(w).

Contradiction. So Π̂(w0) = Π∗∗(w0) for any w0 > ŵm. We conclude w∗∗ < ∞. �

We are now in a position to prove Proposition 3. So far, the argument has hewn closely

to the proof of Proposition 2. The rest of the proof marks a more substantial departure.

Lemma 9 shows that a positive-measure set W exists such that Π∗∗(w0) > Π̂(w0) for all

w0 ∈ W. Lemma 7 implies that for any w0 ∈ W, we can construct an infinite sequence of

periods such that the household remains in the community for each period in that sequence.

For any w0 /∈ W, Π∗∗(w0) = Π̂(w0) and so the household permanently exits the community.

This proves the first part of Proposition 3.

From the proof of Lemma 8, we know that w∗∗ ≤ ŵm. Assumption 2 then implies that

R′(w∗∗) > 1
δ
. As in the proof of Proposition 2, if the household permanently exits the

community, then wt is increasing, with limt→∞ wt > w∗∗. This proves the second part of

Proposition 3.

Suppose w0 ∈ W. Then, Lemma 7 and the definition of w∗∗ immediately imply that

wt < w∗∗ in every t ≥ 0. It remains to identify a wcc < w∗∗ such that if w0 ∈ W, then

whenever wt ∈ (wcc, w∗∗) in a household-optimal equilibrium, wt+1 < wt. By an argument

similar to Proposition 2,

lim
w↑w∗∗

Π∗∗(w) = Π∗∗(w∗∗) = Π̂(w∗∗),

because Π∗∗(·) is increasing, Π̂(·) is continuous, Π∗∗(·) ≥ Π̂(·), and Π∗∗(w) = Π̂(w) for all
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w > w∗∗. Therefore, we can define a wealth level wcc1 < w∗∗ similarly to wc in the proof of

Proposition 2.

Define the function

F (w) ≡ (1− δ)Û(w∗∗ −R−1(w)) + δΠ̂(w∗∗)− Π̂(w)

on w ∈ [0, w∗∗]. Then F (·) is strictly decreasing and continuous, with

F (0) = (1− δ)Û(w∗∗) + δΠ̂(w∗∗) > 0.

At w0 = w∗∗, it is feasible for the household to permanently leave the community and

consume ct = w∗∗ − R−1(w∗∗) in each t ≥ 0. However, doing so violates (Euler), since

R′(w∗∗) > 1
δ
. Therefore, this consumption path must be dominated by some other feasible

consumption path once the household permanently leaves the community, which implies

Û(w∗∗ −R−1(w∗∗) < Π̂(w∗∗).

Consequently,

F (w∗∗) = (1− δ)Û(w∗∗ − R−1(w∗∗))− (1− δ)Π̂(w∗∗) < 0.

We conclude that there exists a unique wcc2 ∈ (0, w∗∗) such that F (wcc2) = 0.

Set wcc = max{wcc1, wcc2}. For any w0 ∈ (wcc, w∗∗) such that Π∗∗(w0) > Π̂(w0), the

household must either stay in the community or leave in t = 0. If it stays in the community,

then we can follow the steps of the proof of Proposition 2, Statement 3, to conclude that

wt+1 ≤ wcc1 < wt.

Suppose the household is in the city in t = 0. Towards contradiction, suppose that
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wt+1 ≥ wt. Therefore, the household’s payoff satisfies

Π∗∗(w0) ≤ (1− δ)Û(w∗∗ −R−1(w0)) + δΠ∗∗(w∗∗)

= (1− δ)Û(w∗∗ − R−1(w0)) + δΠ̂(w∗∗)

< Π̂(w0),

where the first inequality follows because f0 = 0, so that p0 = c0 = w0 − R−1(w1) ≤

w∗∗−R−1(w0); the equality follows because Π∗∗(w∗∗) = Π̂(w∗∗), and the final, strict inequality

follows because w0 > wcc2 and so F (w0) < 0. But Π∗∗(·) ≥ Π̂(·), proving a contradiction. So

wt+1 < wt if the household is in the city in t = 0.

We conclude that if w0 ∈ W, then in any household-optimal equilibrium, wt < w∗∗ for

all t ≥ 0, and wt+1 < wt whenever wt > wcc. This completes the proof. �

B.2 Non-Linear Favors

B.2.1 Model and Statement of Result

In this appendix, we show that a (slightly weaker version of) Proposition 2 holds if the

principal’s payoff is convex in ft.

Consider the game with non-linear favors, which is identical to the game in Section

2 except that the household’s stage-game payoff is

πt =















U(ctdt)− k(ft) in the community

Û(ct, dt)− k(ft) in the city.

Assume that k(·) is strictly increasing, weakly convex, twice continuously differentiable, and

satisfies k(0) = 0 and limf→∞ k′(f) = ∞. Note that a special case of this game has k = U−1,

which corresponds to a setting in which the neighbors value ft according to the same utility

function as the household’s consumption.

Define f ∗(c) as the unique solution to U ′(c) = k′(f ∗(c)) and c∗ as the solution to U(c∗) =
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Û(c∗ − f ∗(c∗)). Note that c∗ exists and is unique because Û ′(c) > U ′(c), f ∗(·) is decreasing,

and limc→∞ f ∗(c) = 0. We impose a modified version of Assumption 1.

Assumption 3 Define c̃(w) as the unique solution to R(w − c̃(w)) = w. Assume that

Û(c̃(w̄)− f ∗(c̃(w̄)))− U(c̃(w̄)) >
δ

1− δ
U(c∗).

Suppose that the household has wealth w̄, which is the wealth level at which strictly

positive-return investments are exhausted. Assumption 3 ensures that this household’s value

from moving to the market and consuming c̃(w̄) − f ∗(c̃(w̄)) forever after is substantially

greater than its utility from staying in the community and consuming c̃(w̄) forever. Note

that c̃(w) is increasing because R′(·) ≥ 1
δ
> 1.

We now prove our main result for the game with non-linear favors.

Proposition 4 Impose Assumption 3 in the game with non-linear favors. Then, there exists

a wse < w̄, a wtr ∈ [0, wse), and a positive-measure set W ⊆ [0, wse) with W ∩ [wtr, wse),

such that in any household-optimal equilibrium,

1. Selection: The household stays in the community forever if w0 ∈ W and otherwise

leaves immediately.

2. Treatment: If w0 ∈ W and wt ≥ wtr on the equilibrium path, then wt+1 < wt.

B.2.2 Proof of Proposition 4

We focus only on those parts of the proof that differ substantially from the proof of Propo-

sition 2.

The proof of Proposition 1 goes through without change, since ft = 0 in every period

of any equilibrium in the city. Similarly, once we substitute the cost function k(f) into the

household’s payoff, the proofs of Lemmas 1 and 2 go through without change.

42



The next step of the proof, which shows that wealthy households leave the community

and poorer households stay, requires a new argument.

Lemma 10 The set
{

w : Π∗(w) > Π̂(w)
}

has positive measure. Moreover,

wse ≡ sup
{

w : Π∗(w) > Π̂(w)
}

satisfies 0 < wse < ∞.

Proof of Lemma 10: The argument that Π∗(0) > Π̂(0) = 0 goes through essentially

without change. Thus, we need to show only that wse < ∞.

Step 1: In any t ≥ 0 of any household-optimal equilibrium, ft ≤ f ∗(ct). If

the household is in the city, ft = 0 ≤ f ∗(ct). If it is in the community, then suppose that

ft > f ∗(ct). Consider perturbing the equilibrium by decreasing ct and ft by ǫ > 0. This

perturbation is feasible as ǫ → 0, and moreover, increases the household’s stage-game payoff

at rate k′(ft) − U ′(ct) > k′(f ∗(ct)) − U ′(ct) = 0. Thus, the original equilibrium was not

household-optimal. This proves Step 1.

Step 2: For any w ≥ 0, Π∗(w)− Π̂(w) ≤ U(c∗). If Π∗(w) = Π̂(w), then the result is

immediate. Suppose that Π∗(w) > Π̂(w). By Lemma 2, a household with w0 = w stays in

the community in any t ≥ 0 of any household-optimal equilibrium.

Fixing such an equilibrium, we can derive a lower bound on Π̂(w) using the following

perturbation: the household leaves the community, chooses p̃t = pt in each t ≥ 0, and request

consumption c̃t = ct − ft ≥ 0. This strategy is feasible, and the resulting payoff satisfies

∑∞
t=0 δ

t(1− δ)Û(ct − ft) =
∑

t|ct≥c∗ δ
t(1− δ)Û(ct − ft) +

∑

t|ct<c∗ δ
t(1− δ)Û(ct − ft)

≥
∑

t|ct≥c∗ δ
t(1− δ)Û(ct − f ∗(ct)),
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where the inequality follows because ft ≤ f ∗(ct) and ct − ft ≥ 0. Therefore,

Π∗(w)− Π̂(w) ≤
∑∞

t=0 δ
t(1− δ)

(

U(ct)− Û(ct − ft)
)

≤ ∑

t|ct≥c∗ δ
t(1− δ)

(

U(ct)− Û(ct − f ∗(ct))
)

+
∑

t|ct<c∗ δ
t(1− δ)U(ct)

≤ U(c∗),

where the first two inequalities follow from our lower bound on Π̂(w), and the final inequality

holds because U(ct) ≤ Û(ct − f ∗(ct)) for all ct ≥ c∗, and U(ct) ≤ U(c∗) for all ct < c∗. This

proves Step 2.

Step 3: There exists a wse such that for all w ≥ wse, Π∗(w) = Π̂(w). Fix a

wealth level such that Π∗(w) > Π̂(w) and Π̂(w) > U(c∗), and consider a household-optimal

equilibrium with w0 = w. By Lemma 2, the household must stay in the community forever.

Therefore, there exists t ≥ 0 such that U(ct) ≥ Π̂(w), so ct > c∗.

In this period t, we must have Π∗(wt+1) > Π̂(wt+1). Since the household can always leave

the community, consume ct − f ∗(ct), and earn Π̂(wt+1), Π
∗(wt) > Π̂(wt) holds only if

(1− δ)U(ct) + δΠ∗(wt+1) > (1− δ)Û(ct − f ∗(ct)) + δΠ̂(wt+1)

or

δ

1− δ

(

Π∗(wt+1)− Π̂(wt+1)
)

> Û(ct − f ∗(ct))− U(ct).

By Step 2, this inequality holds only if

δ

1− δ
U(c∗) > Û(ct − f ∗(ct))− U(ct). (6)

Now, choose wse such that Û(c̃(wse) − f ∗(c̃(wse))) − U(c̃(wse)) = δ
1−δ

U(c∗); note that

wse exists and satisfies wse < w̄ by Assumption 3. For any w ≥ wse, (6) cannot hold,

which means that in any household-optimal equilibrium, there exists a t ≥ 0 such that
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Π∗(wt) = Π̂(wt). Lemma 2 then implies that for all w ≥ wse, Π∗(w0) = Π̂(w0). We conclude

that wse < w̄ < ∞, as desired. �

We can now complete the proof of Proposition 4. As in the proof of Proposition 2,

selection follows from Lemmas 2 and 10. The argument for treatment is similar to the

argument in Proposition 2, with two notable exceptions. First, we must substitute k(ft)

into the household’s payoff. Second, we have not proven that wealth is monotone, so we

must replace w0 with wt throughout the argument. With this change, the proof shows that

wt+1 < wt whenever wt > wc. We can therefore take wc = wtr to prove Proposition 4. �
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