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Abstract

Do workers from social groups with comparable productivity distributions obtain

comparable lifetime earnings? We study how a small amount of early-career discrimina-

tion propagates over time when workers’ productivity is revealed through employment.

Breakdown learning environments that track on-the-job failures grant a disproportion-

ately large advantage to marginally more favored groups, whereas breakthrough learning

environments that track successes guarantee comparable earnings to groups of compa-

rable productivity. This discrepancy persists with large labor markets, flexible wages,

inconclusive signals, and misspecified employer beliefs. Allowing for investment in pro-

ductivity exacerbates inequality between groups under breakdown learning.

JEL: D83, J71, C78

Keywords: early-career statistical discrimination, star jobs, guardian jobs, spiraling

discrimination, self-correcting discrimination

1 Introduction

Young workers enter the labor market with uncertain productivity levels. To cope with this

uncertainty, employers have been documented to rely on observable characteristics — such as

a worker’s gender or race — as statistical proxies for the worker’s productivity.1 Such early-

career statistical discrimination determines who makes the first cut when opportunities are
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1Discrimination in hiring practices has been empirically documented in Goldin and Rouse (2000), Pager

(2003), Bertrand and Mullainathan (2004), and other studies surveyed by Bertrand and Duflo (2017).
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scarce: workers from ex-ante more productive social groups may be systematically prioritized

even when the initial productivity difference with other groups is small.

Does the impact of such early-career discrimination on workers’ earnings vanish or in-

tensify over time? One conjecture is that social groups of comparable productivity obtain

comparable lifetime earnings: an employer learns more about workers’ productivity after

observing their on-the-job performance and reallocates opportunities accordingly. An oppo-

site conjecture is that comparable groups fare drastically differently: early opportunities to

perform are pivotal in a worker’s career. Without these early steps, it is hard to climb the

ladder.

This paper shows that the right conjecture crucially depends on how employers learn

about workers’ productivity. In environments that track on-the-job successes, early-career

discrimination has minor consequences for workers’ lifetime earnings and employment oppor-

tunities. In environments that track on-the-job failures, by contrast, early-career discrim-

ination significantly affects workers’ prospects. Its adverse effect on discriminated workers

increases in the size of both the favored groups and the discriminated ones. Our analysis

thus suggests a classification of learning environments that predicts whether the impact of

early-career discrimination vanishes or gets amplified over time.

The contrast between learning environments persists when workers can invest in their pro-

ductivity and, perhaps counterintuitively, when wages are flexible. Opportunities to invest

in productivity magnify the difference in the groups’ productivities in learning environments

that track failures, but not so in those that track successes. This leads to a tradeoff between

efficiency and equality: learning environments that reduce the impact of early-career discrim-

ination also tend to stifle the expected productivity of employed workers. When wages are

flexible, a possibility that we formalize in a dynamic two-sided matching model, comparable

groups continue to have drastically different earnings in environments that track failures.

Our analysis focuses on labor markets in which: (i) workers from distinct groups compete

for scarce tasks, (ii) employers learn about a worker’s productivity only if the worker performs

a task, and (iii) groups have comparable productivity distributions.2 Sarsons (2019) studies

2These stylized features tractably capture a more general environment in which (i’) some tasks are more
desirable than others and desirable tasks are in limited supply, which may be due to limited industry capacity
or diseconomies of scale, (ii’) workers who perform desirable tasks reveal more about their ability to perform
these tasks than do workers who are either employed in other tasks or unemployed, and (iii’) groups have
very different productivity distributions. Our focus on comparable groups provides a particularly stark
illustration of the role played by the learning environment in the dynamics of statistical discrimination.
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one such market, in which male and female surgeons compete for referrals from physicians.

Physicians learn about surgeons’ abilities from their performed surgeries. Sarsons (2019)

documents that male and female surgeons have comparable abilities: in her sample, female

surgeons have a lower average ability, but the difference is small.3 We seek to quantify the

cumulative advantage resulting from such a small initial difference.

To introduce our results in their simplest form, we begin the analysis with a baseline

model that features one employer and two workers identified by their respective social groups,

a and b. We then generalize the analysis to a dynamic two-sided matching model with

multiple workers in each group and multiple employers. In the baseline model, a worker’s

productivity is either high or low and worker a is ex ante more likely than worker b to have

high productivity. At each instant, the employer allocates the task to one of the two workers

— just like a physician choosing a surgeon for referral in the setting of Sarsons (2019) —

or takes an outside option if the expected productivity of both workers is too low. The

employer’s flow payoff is increasing in the productivity of the employed worker. A worker

benefits from being allocated the task regardless of his productivity.

The employer learns about a worker’s productivity from observing the worker’s per-

formance on the task. We contrast two learning environments: breakthrough and break-

down. In the breakthrough environment, a high-productivity worker generates successes, or

“breakthroughs,” at randomly distributed times and a low-productivity worker generates no

successes. In the breakdown environment, a low-productivity worker generates failures, or

“breakdowns,” at randomly distributed times, whereas a high-productivity worker does not.4

The learning environment may be interpreted as an intrinsic feature of the job consid-

ered. Breakthrough and breakdown environments correspond, respectively, to “star jobs”

and “guardian jobs” as conceptualized by Jacobs (1981) and Baron and Kreps (1999). Scien-

tific researchers and high-stakes salesmen are examples of star jobs; routine surgeons, airline

pilots, and prison guards are examples of guardian jobs.5

In both learning environments, the employer first hires worker a, who is more productive

3See Section 2.2.2 and Figure 2 in Sarsons (2019).
4In a more general model, considered in Section 7.1, low-productivity workers also produce breakthroughs,

but at a lower frequency. Similarly, our results are qualitatively unchanged when high-productivity workers
in the breakdown environment generate breakdowns at a lower frequency than low-productivity workers.

5Bose and Lang (2017) argue that most nonmanagerial jobs are “guardian jobs” and derive the optimal
monitoring policy for such jobs. We focus instead on the implications of guardian jobs for the propagation
of small amounts of early-career discrimination and contrast them with “star jobs.”
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in expectation. However, subsequent task allocations differ drastically across environments.

In the breakthrough environment, worker a’s expected productivity declines gradually in

the absence of a breakthrough, until it reaches worker b’s expected productivity. From this

point onward, the employer splits task allocations equally between workers until either one

worker generates a breakthrough, or workers’ expected productivity becomes so low that

the employer prefers to take her outside option. The “grace period” over which the task is

allocated exclusively to worker a reflects the difference in the employer’s prior beliefs about

the two workers. The smaller this belief difference, the shorter the grace period for worker

a, and the smaller the first-hire advantage that worker a obtains due to his group belonging.

As the belief difference shrinks to zero, so does the advantage of worker a. Hence, the

breakthrough environment is self-correcting.

In the breakdown environment, by contrast, the absence of a breakdown from worker

a makes the employer more optimistic about a’s productivity. Therefore, the employer

allocates the task exclusively to worker a until a breakdown arrives. Worker b is granted

a chance to perform the task and demonstrate his productivity only if worker a has low

productivity and misperforms the task. As a result, worker b’s expected payoff is only a

fraction of worker a’s. Even if group a’s productivity distribution is only slightly superior

ex ante, this small initial difference turns into a large payoff advantage in the breakdown

environment. Such spiraling effect, which does not disappear even as learning becomes very

fast, can explain why societies struggle to eliminate inequality in labor markets.

The contrast between the two environments is even sharper when workers can invest

in their productivity before entering the labor market. In the breakdown environment,

slightly different groups invest in significantly different amounts in every equilibrium. Work-

ers’ payoff inequality is higher than in the baseline model, as access to investment dispro-

portionately benefits the post-investment favored group. In the breakthrough environment,

by contrast, there exists generically an equilibrium in which comparable groups invest in

comparable amounts and obtain comparable payoffs. Hence, the self-correcting property of

breakthroughs persists in the presence of investment opportunities.

When learning is sufficiently fast, the breakdown environment is marked by greater

polarization in investment incentives. Across all equilibria, the post-investment favored

worker invests strictly more under breakdowns than under breakthroughs, whereas the post-

investment discriminated worker invests strictly less. When investment is sufficiently effec-
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tive, the employer prefers the breakdown environment, since it incentivizes more investment

by the post-investment favored worker. This result points to a novel tradeoff between effi-

ciency for the employer and equality between workers.

We explore this contrast further in a large market with many workers from each group

and many employers. First, we show that the key determinant of spiraling in the breakdown

environment is the relative scarcity of tasks. Moreover, the scarcer tasks are relative to

workers of either group, the greater is the inequality between groups. This implies that, while

all groups suffer from a decrease in labor demand during economic downturns, discriminated

groups suffer disproportionately more.

There is a widespread view that wage flexibility eliminates inequality between groups of

comparable productivities. To evaluate this view, we introduce flexible wages in the large

market just described. From a methodological standpoint, we develop a dynamic two-sided

matching framework that incorporates learning, and show that the essentially-unique stable

stage-game matching is dynamically stable (Ali and Liu (2020)).

Contrary to this view, wage flexibility does not fix spiraling in the breakdown environ-

ment. Flexible wages cannot eliminate the delay in employment experienced by group b.

This delay further implies that the employer learns more about a-workers than b-workers.

Breakdown learning thus results in a non-vanishing wage gap between groups of almost iden-

tical productivity. Figure 1 illustrates this gap: the dashed curve is the wage path for an

average a-worker, and the solid curve is for an average b-worker. The wage gap persists for

a substantial amount of time. Remarkably, if tasks are sufficiently scarce, the gap persists

even in the very long run.

wage

time
0

average a-worker

average b-worker

Figure 1: Wage paths under breakdowns for groups of comparable productivity

5



This is consistent with the persisting gender pay gap among surgeons (Lo Sasso et al.

(2011), Sarsons (2019)). In line with our emphasis of early-career discrimination, a recent

statement by the Association of Women Surgeons finds that “[T]he disparities women face

in compensation at entry level positions lead to a persistent trend of unequal pay for equal

work throughout the course of their careers.”6 We provide a learning-based mechanism that

explains part of this disparity in wage paths.

The contrast between environments is still present with flexible wages: the wage paths of

the two groups are arbitrarily close in the breakthrough environment. Lang and Lehmann

(2012) observe that it is challenging to explain the simultaneous presence of large racial wage

gaps in some sectors and the absence of such gaps in other sectors. By studying the wage gap

across learning environments, our model is a step towards explaining such wide variation. We

predict that, fixing everything else, breakthrough-like sectors have the tendency to exhibit

much smaller wage gaps than breakdown-like ones.

Lastly, besides objective productivity differences, prejudice may be another cause of early-

career discrimination. Specifically, different groups have the same expected productivity,

but employers believe that one group is inferior. Such prejudice could be due to inaccurate

stereotypes or due to inaccurate information about the candidate pool. The contrast between

the two learning environments extends to such a setting as well, as shown in Section 7.2.

In particular, under breakdown learning, prejudice among employers, even when very mild,

carries dire consequences for the discriminated group.

1.1 Related literature

Our paper contributes to the literature on statistical discrimination. Fang and Moro (2011)

provide a survey of theories in this literature. Phelps (1972) and the literature that followed it

(e.g., Aigner and Cain (1977), Cornell and Welch (1996), and Fershtman and Pavan (2020))

assume that there is a significant, exogenous difference between social groups. Inequality

between groups arises due to this difference. By contrast, Arrow (1973) and the literature

that followed it (e.g., Coate and Loury (1993), Foster and Vohra (1992), Moro and Norman

(2004), and Gu and Norman (2020)) assume no exogenous difference between groups. In-

equality arises because groups coordinate on different equilibria or specialize in different roles

6For more, see AWS’s Statement on Gender Salary Equity.
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within an equilibrium.7

Our approach differs from both strands. First, we assume comparable groups, so the

group difference is vanishingly small. In the setup of Phelps (1972) and subsequent models,

inequality across groups disappears as the difference between groups vanishes, whereas our

model highlights that a vanishingly small difference can snowball into a large payoff gap.

Second, we differ from Arrow (1973) in that inequality across groups is not due to the exis-

tence of multiple equilibria. Unlike most papers in both strands, we model group interaction

by letting groups compete for scarce tasks. From this standpoint our paper is related to

Cornell and Welch (1996) and Moro and Norman (2004). Their task allocation occurs in

one shot, whereas we explore repeated allocation.

Our results also contribute two key insights to the literature on cumulative discrimina-

tion (e.g., Blank, Dabady and Citro (2004), Blank (2005)). First, the learning environment

is critical for whether cumulative discrimination arises. Second, the prospect of future cu-

mulative discrimination casts a long shadow on workers’ investment in productivity.

The paper also contributes to the literature on employer learning (e.g., Farber and Gibbons

(1996), Altonji and Pierret (2001)). We think of the learning environment as an intrinsic

feature of occupations or organizational ranks. On this point our work relates to Mansour

(2012), Altonji (2005), Lange (2007), and Antonovics and Golan (2012). They assume that

the arrival rate of signals varies across occupations, but the learning environment is otherwise

fixed. Instead, we allow the nature of learning to differ across occupations, and demonstrate

the importance of this variation.

Our analysis leverages the tractability of Poisson bandits, which have been used widely

in strategic experimentation models (e.g., Keller, Rady and Cripps (2005), Keller and Rady

(2010), Strulovici (2010), Keller and Rady (2015)).8 In our setting, the employer is the

bandit operator and the workers are the bandit arms. We also explore competing workers’

incentives to invest in productivity, which corresponds to the quality of the arms being

endogenously determined. In modeling bandit arms as strategic players, our paper relates to

Bergemann and Valimaki (1996), Felli and Harris (1996), and Deb, Mitchell and Pai (2019).

7Blume (2006) and Kim and Loury (2018) extend the static setup of Coate and Loury (1993) to incor-
porate generations of workers. By contrast, we examine a single generation of long-lived workers whose
productivities are revealed gradually only when assigned tasks.

8Other applications include moral hazard (e.g., Bergemann and Hege (2005), Hörner and Samuelson
(2013) Halac, Kartik and Liu (2016)), team problem (e.g., Bonatti and Hörner (2011)), delegation (e.g.,
Guo (2016)), contest design (e.g., Halac, Kartik and Liu (2017)), etc.
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In contrast to our investment analysis, they all assume that the qualities of the bandit arms

are exogenously given.9 An exception is Ghosh and Hummel (2012), in which arms’ qualities

are endogenous.

Section 3 identifies the key contrast between breakdown and breakthrough environments.

Section 4 analyzes the role of investment in productivity. Section 5 generalizes the model to

arbitrary numbers of workers and employers. It studies how the relative size of each group

affects the extent of discrimination. Section 6 endogenizes the payoff that workers get from

employment, and shows that allowing for flexible wages does not overturn the discrepancy

between breakthrough and breakdown environments. Section 7 explores the robustness of our

results with respect to more general learning environments and misspecified beliefs. Section

8 concludes.

2 Baseline model

Players and types. Time t ∈ [0,∞) is continuous, and the discount rate is r > 0. There

is one employer (“she”) and two workers (each “he”). Workers belong to one of two social

groups, a or b. We refer to the worker from group i ∈ {a, b} as worker i.

Before time t = 0, each worker draws his type independently from the other worker’s

type. Worker i’s type θi is either high (θi = h) or low (θi = ℓ). The probability that worker i

is a high type is pi ∈ (0, 1). The employer knows the prior belief for each group (pa, pb), but

she does not observe workers’ types. We assume that worker a is ex-ante more productive:

pa > pb. We have a focus on settings in which pb is close to pa.

Task allocation. At each t > 0, the employer allocates a task either to one of the two

workers or to a safe arm. Allocating the task to the safe arm can be interpreted as the

employer resorting to her outside option.

The employer obtains a flow payoff v > 0 if she allocates the task to a high-type worker

and zero if she allocates the task to a low-type one. If she allocates the task to the safe arm,

she earns a flow payoff s ∈ (0, v). The employer’s payoffs are observed at the end of the

horizon.

A worker obtains a flow payoff w > 0, whenever he is assigned the task. Otherwise, his

9Another commonality between this paper and Felli and Harris (1996) is that both use a bandit setting
to model labor market learning.
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flow payoff is zero. This w could be interpreted as the fixed wage for a worker to perform a

task. Without loss of generality, we normalize w to one. In Section 6, we extend our analysis

to settings with flexible wages.

Learning by allocating. Learning about a worker’s type proceeds via Poisson signals. If

worker i is allocated the task over interval [t, t+dt) and his type is θi, a public signal arrives

with probability λθidt. With complementary probability (1− λθidt), no signal arrives.

Thus, a learning environment is characterized by a pair of type-dependent arrival rates

(λh, λℓ) ∈ R
2
+. Based on whether the arrival of a signal reveals a high or a low type, we

distinguish between two learning environments:

(i) breakthrough environment : a signal is a breakthrough if λh > 0 = λℓ;

(ii) breakdown environment : a signal is a breakdown if λℓ > 0 = λh.

A breakthrough perfectly reveals a high-type worker, whereas a breakdown perfectly re-

veals a low-type one. In Section 7.1, we extend our analysis to inconclusive breakthrough

environments (λh > λℓ > 0) and inconclusive breakdown environments (λℓ > λh > 0).10

As discussed in the introduction, we can interpret the learning environment as an intrin-

sic feature of the job. We can also interpret it as an intrinsic feature of how performance is

evaluated. The breakthrough environment tracks overperformance (breakthroughs) relative

to expected performance (no signals), whereas the breakdown environment tracks underper-

formance (breakdowns).

We let p denote the belief below which the employer switches to the safe arm:

p :=















rs

(r + λh)(v − s) + rs
if λh > 0 = λℓ

(r + λℓ)s

r(v − s) + (r + λℓ)s
if λℓ > 0 = λh.

The threshold p is lower than the myopic threshold s/v. We assume that pi > p for i ∈ {a, b},

so in either environment the employer prefers to experiment with both workers before turning

10In our formulation, the employer learns through signals rather than her payoffs. This is equivalent
to an alternative formulation in which the employer learns through observable payoffs. In this alternative
formulation, in the breakthrough environment type h generates a lump-sum benefit at arrival rate λh > 0
and the safe arm generates a flow payoff. In the breakdown environment, type ℓ generates a lump-sum cost
at rate λℓ > 0 and the safe arm generates a flow cost. Our formulation makes it easier to compare the two
learning environments.
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to the safe arm.

3 Benchmark: A stark contrast

This section establishes a stark contrast between the two learning environments. We analyze

the workers’ expected lifetime payoffs given the employer’s optimal hiring behavior. Our

focus is on groups of comparable expected productivities. Hence, we compare the workers’

payoffs as their expected productivities converge and address how this comparison depends

on whether the signal takes the form of a breakthrough (Section 3.1) or a breakdown (Section

3.2).

3.1 Self-correction under breakthroughs

In the breakthrough environment, the arrival of a signal conclusively proves that the worker

is a high type. In the absence of a breakthrough the employer becomes more pessimistic

about a worker’s type. Proposition 3.1 establishes a self-correcting property of breakthrough

learning: a small difference in prior beliefs can only result in a small payoff advantage for

worker a.

The employer’s optimal strategy consists in allocating the task to the worker with the

higher belief at each point in time. Since pa > pb, the employer allocates the task to worker

a first. Because the belief about worker a’s type drifts down for as long as no breakthrough

arrives, worker a is effectively given a grace period [0, t∗) to perform. Here, t∗ measures how

long it takes for the belief about worker a’s type to drift down from pa to pb in the absence of

a breakthrough. If worker a generates a breakthrough before t∗, the employer allocates the

task only to him thereafter. Otherwise, starting from t∗, the employer splits the task equally

among workers until the belief drops down to p, so the workers obtain the same continuation

payoff starting from t∗. The hiring dynamics therefore go through two distinct phases: a

first phase during which worker a is hired exclusively, and a second phase during which the

two workers are treated symmetrically.

Importantly, as pb gets close to pa, the grace period [0, t∗) shrinks to zero. The probability

that worker a generates a breakthrough before t∗ converges to zero as well. Hence, the two

players obtain similar expected payoffs.
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Proposition 3.1 (Self-correcting property of breakthroughs). As pb ↑ pa, the expected payoff

of worker b converges to that of worker a.

Proof. The employer allocates the task first to worker a for t ∈ [0, t∗), where t∗ is the time

that it takes for pa to drop to pb:

pae
−λht

∗

pae−λht∗ + 1− pa
= pb =⇒ t∗ =

1

λh
log

pa(1− pb)

(1− pa)pb
. (1)

After that, the employer splits the task equally between the two workers until either (i) a

breakthrough arrives, or (ii) the belief about the workers’ types hits p. If a breakthrough

arrives, the employer allocates the task only to the worker who generated the breakthrough

thereafter.

We let Ui(pa, pb) be worker i’s payoff given beliefs (pa, pb). Note that Ua(p, p) = Ub(p, p)

for any p ∈ (p, 1). Over interval [0, t∗), worker a generates a breakthrough with probability

pa
(

1− e−λht
∗
)

. If a breakthrough arrives, worker a’s payoff is 1. If it does not arrive, worker

a’s payoff consists of 1 − e−rt∗ , the flow payoff from [0, t∗), and Ua(pb, pb), the continuation

payoff from time t∗ onward. Worker a’s total payoff is

pa
(

1− e−λht
∗
)

+
(

1− pa + pae
−λht

∗
) (

1− e−rt∗ + e−rt∗Ua(pb, pb)
)

.

Worker b gets continuation payoff Ub(pb, pb) at time t∗ if and only if no breakthrough occurs

over [0, t∗):
(

1− pa + pae
−λht

∗
)

e−rt∗Ub(pb, pb).

As pb ↑ pa, t
∗ → 0. Therefore, the two workers’ payoffs are equal in the limit. �

3.2 Spiraling under breakdowns

We now turn to the breakdown environment, in which a signal conclusively proves that the

worker is a low type. As long as a worker generates no breakdown, the employer becomes

more optimistic that his type is high. She first allocates the task to worker a. In the absence

of a breakdown, the employer continues hiring him. If a breakdown is realized, the employer

turns to worker b immediately. If worker b generates a breakdown as well, she resorts to the

safe arm thereafter.
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Proposition 3.2 establishes a spiraling property of breakdown learning: even if pb is just

shy of pa, worker a has a substantially higher payoff than worker b does. In fact, worker a

obtains the same payoff as if worker b did not exist: he is the first to be hired and remains so

until he generates a breakdown. This stands in contrast to the breakthrough environment,

where worker a loses his preferential status if he fails to generate a breakthrough within a

given time window.

Proposition 3.2 (Spiraling property of breakdowns). As pb ↑ pa, the ratio of the expected

payoff of worker b to that of worker a approaches

(1− pa)
λℓ

λℓ + r
< 1.

Proof. If worker a is a high type, his payoff is 1. If he is a low type and the first breakdown

arrives at t, his payoff is (1− e−rt). The arrival time t follows density λℓe
−λℓt. Hence, worker

a’s expected payoff is:

pa + (1− pa)
r

λℓ + r
. (2)

Worker b’s payoff if the employer starts hiring him at time t is:

e−rt

(

pb + (1− pb)
r

λℓ + r

)

.

Conditional on worker a being a low type, this time t is distributed according to density

λℓe
−λℓt. Hence, worker b’s expected payoff is:

(1− pa)
λℓ

λℓ + r

(

pb + (1− pb)
r

λℓ + r

)

. (3)

�

At the heart of spiraling is the fact that the delay that worker b faces does not depend on

how close pb is to pa. The payoff ratio in Proposition 3.2 has two components: (i) (1 − pa)

reflects the fact that worker b obtains a chance only if worker a is a low type, and (ii)

λℓ/(λℓ + r) reflects the expected time it takes for a’s low type to be revealed. Moreover,

even as learning becomes instantaneous — i.e., as λℓ → +∞ — this payoff ratio approaches

(1 − pa) rather than one. Being the second hire is detrimental to worker b even when the

employer learns very fast: worker b never obtains a chance if worker a is a high type.
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Since groups have similar productivity distributions, even if the employer were blind to

workers’ group belonging and treated the workers equally, her payoff would not be much

lower than when she observes group belonging. In the limit as pb ↑ pa, her payoff would

be the same in both cases. Therefore, making it more difficult for the employer to observe

group belonging would equalize workers’ payoffs without making the employer worse off.11

4 Investment in productivity

This section allows workers to invest in their types before they enter the labor market,

and explores the implications of this investment opportunity. Such implications are a priori

unclear: access to investment might level the playing field or it might amplify the productivity

gap between workers. Yet again, it turns out that the learning environment plays a key role.

Section 4.2 establishes that access to investment does not disturb the self-correcting prop-

erty of the breakthrough environment. In the breakdown environment, however, investment

exacerbates spiraling, in the sense that it makes the workers’ payoffs more unequal. Further-

more, Section 4.3 shows that when learning is sufficiently fast, breakdown learning leads to

more polarized investment behavior across workers than breakthrough learning does. Hence,

the post-investment productivity gap is larger under breakdowns than under breakthroughs.

Formally, the investment stage occurs before time t = 0. It takes three steps: (i) workers

draw their pre-investment types independently according to probabilities (pa, pb); (ii) a low-

type worker draws his cost of investment c ∈ [0, 1] according to the cumulative distribution

function F and decides whether to invest; (iii) if he invests, he pays cost c and his type

improves to high with probability π ∈ (0, 1). Each worker’s investment cost, investment

decision, and post-investment type are observed by himself only. We assume that F is

continuously differentiable and strictly increasing.

Workers enter the labor market at time t = 0 and encounter the employer. Subsequently

at each t > 0, the employer allocates a task either to one of the two workers or to a safe arm.

11In a study of blind hiring practices, Goldin and Rouse (2000) show that blind orchestra auditions
substantially increased the likelihood that female musicians advanced to the final round.
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4.1 Preliminary analysis

Before turning to the results, we first characterize the set of equilibria in the investment

game. Let (qa, qb) denote the employer’s belief about each worker after the investment stage.

The employer follows an optimal hiring strategy given this belief pair. We let Bi(qa, qb)

denote the benefit of investment for a low-type worker i:

Bi(qa, qb) := π (Ui(h; qa, qb)− Ui(ℓ; qa, qb)) ,

where Ui(θi; qa, qb) is the expected payoff of worker i with post-investment type θi given

employer’s optimal hiring strategy for (qa, qb). A low-type worker invests if and only if the

benefit of doing so exceeds his realized cost, drawn according to F . Hence, in any equilibrium

a worker’s investment strategy takes a threshold form. We let ci be the cost threshold below

which worker i invests.

An equilibrium is characterized by a pair of cost thresholds (ca, cb) and a pair of post-

investment beliefs (qa, qb) such that:

1. the employer chooses an optimal hiring strategy given (qa, qb);

2. (ca, cb) are the workers’ best responses to the hiring strategy induced by (qa, qb), i.e.,

ci = Bi(qa, qb);

3. (qa, qb) is consistent with workers’ investment strategy (ca, cb), i.e., qi = pi + (1 −

pi)F (ci)π.

A feature common to both learning environments is that if the employer believes that

worker i is more productive than worker −i after the investment stage, then i’s benefit from

investment is strictly higher than that of −i.12 This is because worker i is the first to be

allocated the task: by investing, he might avoid a breakdown in the near future or increase

the chance of a breakthrough within the grace period allotted exclusively to him.

Lemma 4.1 (Post-investment favored worker has higher benefit of investment). In both

learning environments, if qi > q−i then Bi(qa, qb) > B−i(qa, qb). For each i, Bi(qa, qb) is

12In the breakthrough environment, if qa = qb = q the employer optimally splits his task between the
workers, hence Ba(q, q) = Bb(q, q). This is also the case in the breakdown environment, assuming that the
employer randomizes equally between workers at t = 0 if qa = qb.
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continuously differentiable in the breakthrough environment, but it is not continuous at qa =

qb in the breakdown environment.

Proof of Lemma 4.1. Suppose qa > qb, and let µℓ := λℓ/r. Worker i’s benefit from investment

is Bi(qa, qb) = π

(

Ui(h; qa, qb)−Ui(ℓ; qa, qb)

)

. We first show the inequality for the breakdown

environment. Then:

Ua(θa; qa, qb) =











1 if θa = h

1

µℓ + 1
if θa = ℓ

, Ub(θb; qa, qb) =















µℓ(1− qa)

µℓ + 1
if θb = h

µℓ(1− qa)

(µℓ + 1)2
if θb = ℓ.

It follows that if qa > qb then

Ba(qa, qb) = π
µℓ

µℓ + 1
> Bb(qa, qb) = π

(

µℓ

1 + µℓ

)2

(1− qa).

Hence the benefit to the worker with the higher post-investment belief is strictly higher.

Again, the benefit of investment for worker i is:

Bi(qa, qb) =















π
µℓ

µℓ + 1
if qi > q−i

π

(

µℓ

1 + µℓ

)2

(1− q−i) if qi < q−i.

Hence, the benefit of investment for worker i is discontinuous at qi = q−i.

The proof the breakthrough environment follows similar steps but is more algebraically

involved. It is contained in Appendix A. �

The post-investment favored worker i has stronger incentives to invest. This, in turn,

rationalizes the employer’s ranking of worker i over worker −i in equilibrium. Not surpris-

ingly, such a self-fulfilling force — which is also present in Coate and Loury (1993) — leads

to multiple equilibria. In fact, when the prior gap is sufficiently small, there exist equilibria in

which worker b overtakes worker a and thus becomes post-investment favored. Therefore, in-

vestment can reverse the initial ranking of groups. Faced with such multiplicity of equilibria,

we focus on the comparison of the equilibrium sets across the two learning environments.
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Lastly, when pa 6= pb, there cannot exist any equilibrium for which qa = qb. If such

an equilibrium existed, investment would provide the same benefit of investment to both

workers. Workers would therefore use the same investment strategy. However, since their

probabilities of being a high type are different (i.e., pb < pa), worker b would need to invest

more in order to reach qa = qb, which contradicts workers’ identical investment strategies.

4.2 Exacerbated spiraling under breakdowns

Our next proposition formalizes the notion that the self-correcting property of the break-

through environment continues to hold. There always exists an equilibrium in which qb

converges to qa as pb ↑ pa. The workers’ benefits from investment get arbitrarily close, and

so do their investment thresholds. Hence, the payoff gap between comparable workers be-

comes vanishingly small. This equilibrium could either preserve the prior ranking of the

workers — with worker a being post-investment favored — or reverse it.

Proposition 4.1 (Self-correction under breakthroughs). Suppose that F is weakly convex.

For a generic set of parameters, as pb ↑ pa, there exists an equilibrium in which the two

workers’ expected payoffs as well as their post-investment beliefs converge.

By a “generic set of parameters”, we mean that once we fix the cost distribution F and

all other parameters except for (pa, π), the set of values of (pa, π) ∈
(

p, 1
)

× (0, 1) for which

the proposition does not hold has measure zero.13 The proof builds on two observations.

First, when the two workers have the same prior belief (i.e., pa = pb), there always exists a

symmetric equilibrium in which the workers follow the same cost threshold and thus have

the same post-investment belief. Second, under breakthrough learning the benefit from in-

vestment is continuously differentiable in (qa, qb). We invoke the implicit function theorem to

assert that when pb is within a small neighborhood of pa, there exists an equilibrium in which

cost thresholds (ca, cb) and post-investment beliefs (qa, qb) are within a small neighborhood

of those in the symmetric equilibrium.

By contrast, access to investment not only fails to tame the propensity of breakdown

learning to magnify small prior differences, but it makes it worse. Across all equilibria,

13When F is non-convex, a version of the result continues to hold according to a different, more involved,
notion of genericity.
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the payoffs of ex ante comparable workers are even further apart than in the no-investment

benchmark.

Proposition 4.2 (Exacerbated spiraling under breakdowns). As pb ↑ pa, in any equilibrium

(qi, q−i) such that qi > q−i, the ratio of the expected payoff of worker −i to that of worker i

is at most

(1− qi)
λℓ

λℓ + r
< 1,

which is strictly lower than the payoff ratio in the no-investment benchmark, given by (1 −

pa)λℓ/(λℓ + r).

Unlike in the breakthrough environment, the benefit from investment in the breakdown

environment is discontinuous in (qa, qb), as shown in Lemma 4.1. This difference explains

why a proof similar to that in Proposition 4.1 does not work here. Nonetheless, the benefit

function takes a simple form — as already previewed in the proof of Lemma 4.1 — hence

characterizing the set of equilibria is straightforward. As pb ↑ pa there exist only two equilib-

ria: worker a is post-investment favored in one equilibrium and worker b is post-investment

favored in the other. In the limit pb ↑ pa, these two equilibria look the same modulo the

workers’ identities.

As we saw in Proposition 3.2, the payoff ratio across workers in the no-investment bench-

mark is pinned down by pa, the belief of worker a without investment. Because the post-

investment favored worker — whoever that might be — has a strong enough incentive to

invest, his post-investment belief is strictly higher than pa. We show that for any realized

investment cost, the ratio between the payoff of the post-investment discriminated worker

to that of the post-investment favored worker — after factoring in the investment cost —

is lower than that in the no-investment benchmark. Hence, inequality between workers

increases due to the investment opportunity.

4.3 Polarization in investment behavior under breakdowns

Our discussion so far focused on the comparison of learning environments in terms of workers’

payoffs. We now turn to differences in investment behavior. In a nutshell, when learning is

sufficiently fast, the post-investment favored worker invests strictly more under breakdowns

than under breakthroughs. The post-investment discriminated worker, by contrast, invests
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strictly less under breakdowns. Therefore, the breakdown environment is marked by greater

polarization in workers’ investment behavior.

Proposition 4.3 (Investment polarization under breakdowns).

(i) Fixing all but (λh, λℓ), there exists λ̄ > 0 such that for any (λh, λℓ) ∈
[

λ̄,∞
)2

and in any

equilibrium, the post-investment favored worker invests strictly more in the breakdown

environment than in the breakthrough one.

(ii) Fixing all but (λh, λℓ, p), there exists λ̃ > 0 and p̃ > 0 such that for any (λh, λℓ) ∈
[

λ̃,∞
)2

and any p 6 p̃, the post-investment discriminated worker invests strictly less

in the breakdown environment than in the breakthrough one.

When learning is sufficiently fast, investment incentives are seemingly similar across the

two environments. For the post-investment favored worker, he is the first to be allocated the

task and information about his type arrives quickly, so his investment incentives are quite

strong. For the post-investment discriminated worker, investment incentives are less clear.

On the one hand, a stronger favored worker depresses the discriminated worker’s incentives

to invest. On the other, due to fast learning, the discriminated worker might get a chance

earlier. Despite these seeming similarities across environments, Proposition 4.3 identifies key

differences between the two environments. For the result, the arrival rates need not be equal

across environments: all that the result requires are sufficiently high arrival rates. Moreover,

the result holds across all equilibria.

Under breakdown learning, the return from being a high type is very close to one for the

post-investment favored worker. A high type gets a payoff of one, and a low type is revealed

and fired almost immediately. Under breakthrough learning, by contrast, the return from

being a high type is not as high. As learning becomes very fast, the grace period granted

to the favored worker becomes very small. A high type is revealed with probability strictly

less than one during this small grace period. This uncertainty about whether a high type

will be revealed reduces the return from investment. Therefore, the post-investment favored

worker is more motivated to invest in the breakdown environment.

The discriminated worker, on the other hand, has a weaker incentive to invest under

breakdowns than under breakthroughs when the safe arm is sufficiently unappealing to the

employer. This is due to two forces that reinforce each other. First, because of spiraling the
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breakdown environment already disfavors the second worker to be hired much more than the

breakthrough environment does. Second, under breakdowns the discriminated worker faces

an opponent that invests strictly more — as explained above — which further lowers the

chance that the discriminated worker will get a shot from the employer.

An important implication of Proposition 4.3 is that when learning is sufficiently fast

and π sufficiently close to 1, the employer strictly prefers the breakdown environment to

the breakthrough one. That is, if she had the choice between learning environments, she

would opt for the environment that magnifies small differences. Therefore, there is a tradeoff

between efficiency for the employer and equality across workers. The employer prefers the

breakdown environment because this environment encourages almost sure investment by the

favored worker, hence she hires a high type almost surely. In the breakthrough environment,

by contrast, the favored worker is a low type with positive probability after investment.

Hence, the employer’s payoff is bounded away from v.

Corollary 4.2. There exists λ̄ > 0 and π̄ ∈ (0, 1) such that for any λh, λℓ > λ̄ and π > π̄,

the employer’s payoff is strictly higher under breakdowns than under breakthroughs.

Indeterminate ranking under slow learning. When learning is slow, on the other

hand, the environments are more similar and hence the ranking can go either way. For a

simple illustration, suppose λh → 0 and λℓ = ǫ > 0 small. Investment under breakthroughs

is very close to zero for both workers, whereas investment in the breakdown environment

is small but strictly positive for both. Therefore, the breakdown environment provides

greater incentives to invest for such λh and λℓ. The reverse ranking holds if λℓ → 0 and

λh = ǫ > 0. Therefore, it is harder to attain a clear-cut comparison when the environments

are qualitatively more similar.

5 Many employers and workers: The role of task scarcity

Our baseline model focused on a single employer choosing between two workers from distinct

groups. We now consider a market with many employers and many workers from each

group, still modeling only two groups for simplicity.14 Comparable groups continue to have

14The results in this section can be extended to more than two groups.
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comparable payoffs under breakthroughs, but markedly different payoffs under breakdowns.

Moreover, the scarcer tasks are relative to workers, the greater is the inequality between

groups in the breakdown environment.

We consider a two-sided market with a unit mass of employers, a mass of size α of a-

workers, and a mass of size β of b-workers. As before, each employer has a task to allocate

at each moment. An i-worker’s type is high with probability pi and is drawn independently

from other workers’ types. As in our baseline model, we focus on the limit pb ↑ pa.

Moreover, we assume that α+β > 1, so tasks are scarce and some workers are not initially

hired. Such task scarcity is both necessary and sufficient for the payoff gap to emerge in

the breakdown environment. For ease of exposition, we assume α > 1 for the rest of this

discussion. The formal analysis is relegated to Appendix B.

Broad allocation under breakthroughs. Mirroring the analysis in Section 3.1, the

dynamic allocation of tasks goes through two phases. In the first phase, all a-workers take

turns to perform tasks. If a worker generates a breakthrough, he “secures his job” with

his current employer: the employer allocates future tasks only to this worker thereafter.

For those a-workers without a breakthrough, the employers’ belief drops gradually until it

reaches pb. At that point, a-workers without breakthroughs are believed to be as productive

as b-workers. The allocation now enters a second phase in which remaining employers let

remaining a-workers and all b-workers take turns to perform tasks. Again, those who generate

breakthroughs secure their jobs with their current employers.

Breakthrough learning, hence, prompts employers to try a broad set of workers. A similar

observation was made in passing by Baron and Kreps (1999) on recruitment for star jobs:

For a star job, the costs of a hiring error are small relative to the upside potential

from finding an exceptional individual. Therefore, the organization will wish to

sample widely among many employees, looking for the one pearl among the

pebbles.

Our focus is on the implication of such broad allocation for group inequality. Employers

quickly extend their search to group b, so a b-worker’s payoff converges to an a-worker’s

payoff as pb ↑ pa. Therefore the self-correcting property extends to larger labor markets.

Focused allocation under breakdowns. We next show that breakdown learning leads

to sluggishness in trying new workers: if a worker is hired, he remains so until he generates
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a breakdown. This sluggishness hurts group b disproportionally no matter how close pb is to

pa, thus generalizing the intuition gained from Section 3.2 to larger labor markets.

At the start, a unit mass of a-workers are hired by the unit mass of employers. These

workers continue to be hired as long as they do not generate breakdowns. When one of

these a-workers generates a breakdown, he is replaced by a new a-worker for as long as

one is available. So, b-workers wait for their turn until all of a-workers have been tried and

sufficiently many a-workers have generated breakdowns. Crucially, this delay does not shrink

as pb ↑ pa. Therefore, the expected payoff of a b-worker remains bounded away from that of

an a-worker.

Larger groups, higher inequality under breakdowns. We measure group inequality by

the ratio of a b-worker’s expected payoff to that of an a-worker as pb ↑ pa. In the breakdown

environment, inequality between groups increases as the size of either group increases.

First, increasing β while keeping α fixed intensifies competition within group b but does

not affect the payoff of a-workers. Second, increasing α while keeping β fixed hurts both

groups: it intensifies competition within group a while also increasing delay for group b. We

show that increasing α hurts group b more than it hurts group a, since adding one more

a-worker uniformly delays every b-worker’s employment. Therefore, the larger is the labor

supply from either group — i.e., the more workers there are from either group relative to

the unit mass of tasks — the greater is the inequality between groups.

Proposition 5.1 (Inequality increases in task scarcity under breakdowns). Let α > 1 and

β > 0. As pb ↑ pa, the limiting ratio of the expected payoff of a b-worker to that of an

a-worker decreases in both α and β.

This result predicts that when the scarcity of job opportunities intensifies — e.g., when

labor demand falls during an economic downturn — inequality deepens. This is consistent

with the observation that while all groups suffer during an economic downturn, some suffer

disproportionately more.15

15Estimates from Pew Research Center show that the white-to-black and white-to-Hispanic wealth ratios
were much higher at the peak of the recession in 2009 than they had been since 1984, the first year for which
the U.S. Census Bureau published wealth estimates by race and ethnicity based on the Survey of Income
and Program Participation.
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6 Flexible wages

Thus far we assumed that a worker’s wage from performing a task is fixed. A natural

question is whether flexible wages can restore payoff equality in the breakdown environment.

This section shows that when workers are protected by limited liability, so that wages are

non-negative, both the self-correcting property of breakthroughs and the spiraling property

of breakdowns still hold. In particular, wage flexibility is insufficient to prevent spiraling.

We introduce flexible wages to the large market of Section 5. Now a stage-game outcome

describes not only how workers are matched to employers but also a wage for each matched

pair. We call this a stage-game matching. Using the solution concept of Shapley and Shubik

(1971), we characterize the set of stable stage-game matchings. The dynamic counterpart of

a stage-game matching — a dynamic matching — specifies, after each history, how workers

are matched to employers along with a wage for each matched pair. Adopting the solution

concept of Ali and Liu (2020), we show that prescribing the stable stage-game matching

after each history is dynamically stable: no worker-employer pair and no single player has a

profitable one-shot deviation after any history. The formal analysis is relegated to Appendix

C.

In both learning environments, employers are matched to the most productive workers

after each history. In particular, there is a history-dependent marginal belief pM : all workers

with belief greater than pM are matched and all those with belief below pM are not. Wage

takes a strikingly simple form: a matched worker of belief p is paid (p − pM)v, which is

the additional value that he creates relative to the marginal-belief worker. An unmatched

worker is paid zero wage. As a result, all employers get the same flow profit of pMv.

Why is prescribing the stable stage-game matching after each history dynamically stable?

First, no employer finds it profitable to reject being matched, since his flow profit from being

matched is at least as high as his payoff from a safe arm. Second, no employer-worker

pair has a profitable one-shot deviation, since all employers make the same flow profit.

Lastly, no worker finds it profitable to reject being matched and delay learning. The wage,

max{0, (p−pM)v}, is convex in the employer’s belief p, as shown by the green curve in Figure

2. So learning — and hence splitting the current belief into posterior beliefs — benefits the

worker.
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Flexible wages do not fix spiraling. A widespread view is that with flexible wages,

workers of comparable beliefs obtain comparable payoffs. This would be the case if the

matching occurred only once: given wage continuity, a b-worker’s payoff in a one-shot match-

ing would converge to an a-worker’s payoff as pb ↑ pa. But this intuition no longer holds

when matching occurs multiple times.

To illustrate, we consider a two-period example in Figure 2. In the first period, since

pa > pM > pb, the a-worker is hired and the b-worker is not. However, since pa is close to

pb, the a-worker’s wage w1 is very close to zero. This shows that, within a single period,

workers of comparable beliefs obtain comparable payoffs.

The a-worker’s performance in the first period reveals information about his type, split-

ting the prior belief pa into two posterior beliefs. We let pa, pa denote the posterior beliefs,

so the expected wage for the a-worker in the second period is w2. The more information is

gathered about the a-worker, the further pa and p
a

are from pa, so the higher w2 is. Hence,

due to learning about the a-worker’s type, the payoff gap between workers widens in the

second period.16

wage

p
0 1pb

pM

pa
b b b

w1 b

max{0, (p− pM)v}

first period

wage

p
0 1pb pa pap

a

b b

b

bw2

b b b

second period

Figure 2: A two-period example

This two-period example illustrates why spiraling arises under breakdowns even with

flexible wages. The group delay experienced by b-workers does not vanish even as pb gets

arbitrarily close to pa. By the time that employers start hiring b-workers, they have already

16Figure 2 ignores the fact that the marginal belief pM evolves over time. The intuition extends readily
to the case with history-dependent pM .
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learned a lot about a-workers’ types. Hence, the expected flow payoff of an a-worker is

significantly higher than that for a b-worker. By contrast, under breakthroughs, the group

delay experienced by b-workers vanishes as pb converges to pa, so employers have not learned

much more about a-workers than about b-workers. Hence, their payoffs converge.

Persistent wage gap under breakdowns. We also obtain closed-form expressions for

the expected wage path of each group as pb ↑ pa in the breakdown environment. In line

with the persistence of spiraling, the average a-worker and the average b-worker face very

different wage paths (see Proposition C.3 and Figure 3). Due to the non-vanishing delay

faced by group b, the expected wage gap first expands monotonically and then it shrinks.

Whether the wage gap approaches zero in the long run depends on how scarce tasks are. If

task scarcity is sufficiently severe — in the sense that there are in expectation more tasks

than high-type workers, so pa(α+ β) > 1 — this wage gap remains bounded away from zero

even as t → ∞.

The wage gap at any instant is due to the combination of two factors. First, at any

instant, an average a-worker has a higher chance of being hired than an average b-worker.

Second, an average b-worker is hired at a later date than an average a-worker, so more is

learned about this a-worker’s type. Hence, conditional on being hired, the a-worker has a

higher expected wage than the b-worker does.

7 Other modeling variations

7.1 Inconclusive learning environments

In our baseline model, signals are conclusive: only one type can generate the signal. More

generally, a learning environment is characterized by a pair of arrival rates (λh, λℓ) such

that λθ > 0 for both θ ∈ {h, ℓ}. That is, both high and low types generate signals. The

environment is an inconclusive breakthrough one if the signal suggests a high type (i.e.,

λh > λℓ) and an inconclusive breakdown one otherwise (i.e., λh < λℓ). If λh = λℓ, signals are

uninformative.

The self-correcting property extends to inconclusive breakthroughs, as established in

Proposition D.1. Even though the employer does not assign the task to worker a indefinitely
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upon the realization of the first breakthrough, there is still a time window [0, t∗) over which

worker a should generate a first breakthrough in order to continue being allocated the task

exclusively. If no breakthrough arrives during this time window, the belief about worker a’s

type drops to pb, at which point both workers receive equal continuation payoffs. It continues

to be the case that as pb ↑ pa, t
∗ shrinks to zero and hence the probability that worker a

generates a breakthrough within the time window vanishes as well. The two workers’ limit

payoffs are therefore equal.

The spiraling property generalizes to inconclusive breakdowns as well, provided that

players are sufficiently impatient. The departure from conclusive breakdowns brings the

complication that the employer might revisit workers who have generated breakdowns in the

past. But as long as pa > pb, worker a is the first to be hired and stays employed in the

absence of a breakdown. The expected time until the first breakdown is significant. If players

are sufficiently impatient, this already leads to a significant payoff advantage for worker a.17

Proposition D.2 presents the details.

7.2 Misspecified prior belief

Suppose that the two workers have the same probability ptrue of being a high type, but

the employer believes that worker b has a lower probability pmis < ptrue.
18 The spiraling

property of the breakdown environment continues to hold, in the sense that even a very

slight misspecification grants a large payoff disadvantage to worker b. Worker a is hired

first based on the employer’s misspecified belief and the workers’ payoffs are still given by

expressions (2) and (3) (with pa and pb being replaced by ptrue).

The self-correcting property of the breakthrough environment continues to hold as well, in

the sense that a slight misspecification will not have large payoff consequences for workers.

Duration t∗ — analogous to the grace period in (1) — now measures how long it takes

for the belief about worker a’s type to drift down from ptrue to pmis. As the amount of

misspecification vanishes to zero, so does t∗ as well. At time t∗, the true probability that

worker a is a high type is pmis, whereas the true probability that worker b is a high type is

17The sufficient condition for spiraling can be also stated in terms of arrival rates (λh, λℓ) rather than the
discount rate r: breakdowns need to be sufficiently infrequent, i.e., λh, λℓ sufficiently small.

18Bohren et al. (2019) refer to this as “inaccurate statistical discrimination.” Bohren, Imas and Rosenberg
(2019) identify discrimination driven by misspecified beliefs in an experimental setting.
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ptrue. The employer, though, believes that both probabilities are pmis, so she splits the task

equally between workers from t∗ onwards.

We let Ûa (pmis, ptrue) and Ûb (pmis, ptrue) be the continuation payoffs of worker a and b at

time t∗. Because each worker gets half a task but worker a has a lower true probability of

being a high type, his payoff Ûa (pmis, ptrue) is lower than Ûb (pmis, ptrue). Crucially, as pmis

converges to ptrue, the two payoffs get arbitrarily close. To extend the proof of Proposition

3.1 to the misspecified-prior case, we only need to replace t∗ with the new definition and

replace Ui(pb, pb) with Ûi (pmis, ptrue) for workers’ payoffs.

Belief misspecification is quite relevant in discussions of labor-market discrimination.

Lang and Lehmann (2012) provide evidence that suggests the presence of widespread mild

prejudice among employers. Our results show that prejudice, even when infinitesimally

mild, has very different implications in different learning environments. The breakthrough

environment works well against prejudice, whereas the breakdown environment propagates

it further.

8 Concluding remarks

This paper studied the payoff consequences of different learning environments for social

groups of comparable productivity. We argued that whether the learning environment is

closer to a breakdown environment or a breakthrough one has important implications for

whether discrimination persists in the long run. Lange (2007) observed that “how economi-

cally relevant statistical discrimination is depends on how fast employers learn about workers’

productive types.” Our analysis adds an important missing piece to this view: what matters

for statistical discrimination is not only the speed of employer learning, but also the nature

of that learning.

The contrast between breakdown and breakthrough learning environments is reminis-

cent of the job typology introduced by Jacobs (1981) and Baron and Kreps (1999). More

empirical work is needed to investigate the persistence and magnitude of discrimination in

guardian jobs compared to star jobs, both in terms of the employment and promotion gaps

and in terms of the wage gaps that our theory predicts. Our theoretical framework and its

testable implications can guide such empirical work.

Besides the testable predictions discussed so far, one natural empirical question for which
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our framework can be useful is the long-lasting effects of temporary affirmative action for dis-

criminated groups (Miller and Segal (2012), Kurtulus (2016), Miller (2017)). The empirical

evidence on this question is mixed. A natural corollary of our analysis is that, in breakdown

environments, if the employer is obligated to give a chance to group b early on, this dramat-

ically improves the prospects of b-workers as they will continue to be hired even after this

temporary obligation is lifted. This will not be the case in breakthrough environments.

Finally, our framework can be used to study questions that fall beyond the scope of

the current paper. First, an employer may have to allocate multiple tasks that generate

different learning dynamics. For instance, if an employer has both a breakthrough task and

a breakdown task, how will she allocate the tasks between workers from comparable social

groups? Second, in certain contexts the learning environment is an endogenous choice of the

employer rather than exogenously fixed. Corollary 4.2 outlined circumstances under which

the employer prefers breakdown learning. More generally, is the endogenous choice of the

learning environment more likely to lead to breakdown or breakthrough learning? Third, our

framework can prove useful to understand incentives for occupational segregation: workers

from discriminated groups have incentives to sort into breakthrough-like occupations in order

to avoid spiraling. We leave these questions to future research.
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A Proofs for Section 4

Continuation of the proof of Lemma 4.1. We now show the inequality for the breakthrough

environment. Let qa > qb. The employer uses worker a exclusively for a period of length

t∗ = 1
λh

log qa(1−qb)
(1−qa)qb

and then splits the task equally among the two workers for a subsequent

period of length ts := 2
λh

log
qb(1−p)

(1−qb)p
. Let S(h, qb) and S(ℓ, qb) denote the payoffs to a high-

type worker and a low-type worker, respectively, if (i) his opponent is a high type with

probability qb; (ii) the employer holds the same belief about both workers and hence splits

the task equally between the two workers until the belief drops to p. The post-investment

payoff for each worker and type are:

Ua(h; qa, qb) = 1− e−rt∗ + e−rt∗
(

1− e−λht
∗

+ e−λht
∗

S(h, qb)
)

,

Ua(ℓ; qa, qb) = 1− e−rt∗ + e−rt∗S(ℓ, qb),

Ub(h; qa, qb) = e−rt∗
(

1− qa + qae
−λht

∗
)

S(h, qb),

Ub(ℓ; qa, qb) = e−rt∗
(

1− qa + qae
−λht

∗
)

S(ℓ, qb).

Note that Ua(h; qa, qb) − Ua(ℓ; qa, qb) > e−rt∗(S(h, qb) − S(ℓ, qb)) whereas Ub(h; qa, qb) −

Ub(ℓ; qa, qb) < e−rt∗(S(h, qb)− S(ℓ, qb)). Hence, Ba(qa, qb) > Bb(qa, qb).

To characterize S(h, qb) and S(ℓ, qb), let t1 be the arrival time of a high type’s break-

through and t2 the arrival time of his opponent’s breakthrough. For a low type, a break-

through never arrives. In the absence of any breakthroughs, the employer experiments with

the workers until the belief hits p. The length of this experimentation period is given by ts

as defined above. The CDFs of t1 and t2 for t1, t2 6 ts are:19

F1(t1) = 1− e−
λht1

2 , F2(t2) = qb(1− e−
λht2

2 ),

with corresponding density functions f1 and f2 respectively. Therefore,

S(ℓ, qb) =

∫ ts

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(ts))

1− e−rts

2
,

19When the task is split equally among workers, the arrival rate for each worker is λh/2.
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S(h, qb) =

∫ ts

0

f1(t1)

(
∫ t1

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(t1))

(

1− e−rt1

2
+ e−rt1

))

dt1

+ (1− F1(ts))

(
∫ ts

0

f2(t2)
1− e−rt2

2
dt2 + (1− F2(ts))

1− e−rts

2

)

.

This allows us to obtain explicit expressions for Ba and Bb. Letting µh := λh/r, we have

Ba(qa, qb) = π

(

qb(p− 1)

(qb − 1)p

)−2/µh
(

(qb − 1)qa
qb(qa − 1)

)

−1/µh

·
(p− 1)2

(

qb(p−1)

(qb−1)p

)2/µh

(qb(µhqb + 2)− (µh + 2)qa)− (qb − 1)2(p(µh(p− 2)− 2) + (µh + 2)qa)

2(µh + 2)(qb − 1)(p− 1)2qa

if qa > qb, and

Ba(qa, qb) = πqb

(

qb(qa − 1)

(qb − 1)qa

)

−
µh+1

µh

(

(p− 1)qa

p(qa − 1)

)−2/µh

·
µh(p− 1)2qa

(

(p−1)qa

p(qa−1)

)2/µh

− (qa − 1)(p(µh(p− 2)− 2) + (µh + 2)qa)

2(µh + 2)(p− 1)2q2a

if qa 6 qb. At any (qa, qb) such that qa 6= qb, it is immediate that Ba is continuously

differentiable. Moreover,

lim
qa→q+b

Ba(qa, qb) = lim
qa→q−b

Ba(qa, qb)

lim
qa→q+b

∂Ba(qa, qb)

∂qa
= lim

qa→q−b

∂Ba(qa, qb)

∂qa

lim
qa→q+b

∂Ba(qa, qb)

∂qb
= lim

qa→q−b

∂Ba(qa, qb)

∂qb
.

Hence, Ba is continuously differentiable at qa = qb as well.20

�

Proof of Proposition 4.1. A belief pair (qa, qb) and a cost-threshold pair (ca, cb) consist in an

20For detailed calculations, see this online supplement.
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equilibrium if and only if ∀i ∈ {a, b}:

Bi(qa, qb) = ci, and qi = pi + (1− pi)F (ci)π.

From the second condition, we have ci = F−1
(

qi−pi
(1−pi)π

)

. Hence, a belief pair (qa, qb) consists

an equilibrium if and only if:















1

π
Ba (qa, qb)−

1

π
F−1

(

qa − pa
(1− pa)π

)

= 0

1

π
Bb (qa, qb)−

1

π
F−1

(

qb − pb
(1− pb)π

)

= 0.
(4)

Let ga(pa, pb, qa, qb) and gb(pa, pb, qa, qb) denote respectively the LHS of each equation. Both

ga and gb are continuously differentiable, because Ba, Bb and F are continuously differentiable

and F ′ is strictly positive.

Existence of symmetric equilibrium. We first show that if workers have the same prior

belief, there is a symmetric equilibrium in which they have the same post-investment belief.

Let p̂ denote the two workers’ prior belief. A symmetric equilibrium exists if there exists

q̂ ∈ [p̂, p̂+ (1− p̂)π] such that:

Bi(q̂, q̂) = F−1

(

q̂ − p̂

(1− p̂)π

)

=⇒

π



µh +

(

q̂(1−p)

(1−q̂)p

)

−

µh+2
µh ((µh+2)q̂+p(µh(p−2)−2))

(1−p)p





2(µh + 2)
= F−1

(

q̂ − p̂

π(1− p̂)

)

.

(5)

Such a q̂ exists because for q̂ ∈ [p̂, p̂ + (1 − p̂)π]: (i) Bi(q̂, q̂) is continuous, strictly positive,

and strictly less than one; and (ii) F−1
(

q̂−p̂
(1−p̂)π

)

is strictly increasing, equals 0 if q̂ = p̂,

and equals 1 if q̂ = p̂ + (1 − p̂)π. Therefore, there exists q̂ ∈ (p̂, p̂ + (1 − p̂)π) such that

F−1
(

q̂−p̂
(1−p̂)π

)

crosses Bi(q̂, q̂) from below. Hence, ga(p̂, p̂, q̂, q̂) = gb(p̂, p̂, q̂, q̂) = 0.

Non-singularity of the Jacobian at (p̂, p̂, q̂, q̂). We next show that the Jacobian matrix

evaluated at (p̂, p̂, q̂, q̂) is invertible for a generic set of parameters, where the Jacobian is
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given by:

J =

(

∂ga
∂qa

∂ga
∂qb

∂gb
∂qa

∂gb
∂qb

)∣

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

.

Note that J is symmetric: ∂ga
∂qa

= ∂gb
∂qb

∣

∣

∣

(p̂,p̂,q̂,q̂)
and ∂ga

∂qb
= ∂gb

∂qa

∣

∣

∣

(p̂,p̂,q̂,q̂)
. Hence, we only need

to show that:

∂ga
∂qa

+
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

6= 0 (6)

∂ga
∂qa

−
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

6= 0. (7)

Claim (6) holds because

∂ga
∂qa

+
∂ga
∂qb

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

=









∂Ba(qa, qb)

∂qa
+

∂Ba(qa, qb)

∂qb
−

d F−1

(

qa − pa
(1− pa)π

)

d qa









∣

∣

∣

∣

∣

∣

∣

∣

(p̂,p̂,q̂,q̂)

< 0.

The inequality follows from the fact that 1
π
F−1

(

q − pa
(1− pa)π

)

generically crosses 1
π
Ba(q, q)

transversally from below at q = q̂, as shown in the lemma below.

Lemma A.1. There exists Π ⊂ (0, 1) of measure one such that

g(q, π) :=
1

π
Ba(q, q)−

1

π
F−1

(

q − p̂

(1− p̂)π

)

intersects zero transversally for any π ∈ Π.

Proof. First, g(q, π) is strictly increasing in π because the term 1
π
Ba(q, q) is independent

of π and F−1 is strictly increasing in [0, 1]. Therefore 0 is a regular value of g(q, π). By

the transversality theorem, there exists a set Π ∈ (0, 1) of values for π such that (0, 1) \ Π

has measure zero and for any π ∈ Π, 0 is a regular value of g(q, π). Hence, generically the

derivative of g(q, π) with respect to q at q = q̂ is non-zero. �

31



Claim (7) holds unless:

(

q̂(1−p)

(1−q̂)p

)

−2/µh
((µh+2)q̂2+µh(2q̂−1)p2−2(µh+1)(2q̂−1)p)

(p−1)2
+ 2q̂(µh q̂+1)

1−q̂

2(µh + 2)q̂2
=

1

π2(1− p̂)F ′

(

F−1
(

q̂−p̂
π(1−p̂)

)) .

(8)

Fix (F, p, µh, p̂). The following lemma shows that for almost any (π, p̂) claim (7) holds.

Lemma A.2. Suppose that F is weakly convex. Then, claim (7) is satisfied in equilibrium

for almost all (π, p̂).

Proof. Equations (5) and (8) are equivalent respectively to:

g1(p, π, q) =
1

π
F−1

(

q − p

(1− p)π

)

− h1(q) = 0

g2(p, π, q) =
1

π2(1− p)F ′

(

F−1
(

q−p
π(1−p)

)) − h2(q) = 0,

where h1, h2 are functions of q only. The determinant of the Jacobian matrix of this system

with respect to (p, π) is

(1− p)πF (−1)
(

p−q
(p−1)π

)

F ′

(

F (−1)
(

p−q
(p−1)π

))

+ 2− p− q

(1− p)3π5F ′

(

F (−1)
(

p−q
(p−1)π

))2 +

(1− q)F (−1)
(

p−q
(p−1)π

)

F ′′

(

F (−1)
(

p−q
(p−1)π

))

(1− p)3π5F ′

(

F (−1)
(

p−q
(p−1)π

))3 ,

which is strictly positive if F ′′ is weakly positive. So the Jacobian matrix is invertible.

This implies that for almost all π, the function g = (g1, g2)(p, q) crosses (0, 0) transver-

sally, which means the points at which (p, q) form a symmetric equilibrium (i.e., satisfying

(5)) and violate claim (7) (i.e., satisfying (8)) are isolated. Hence, if F is weakly convex,

for almost all π, the set of p for which the symmetric equilibrium violates claim (7) is finite.

Hence, claim (7) is satisfied in equilibrium for almost all (π, p̂). �
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Implicit function theorem. We can invoke the implicit function theorem everywhere

except for a set of measure zero of parameters. Therefore, by the implicit function theorem,

there exists a neighborhood B ⊂ [0, 1]2 of (p̂, p̂) and a unique continuously differentiable map

q : B → [0, 1]2 such that ga(p̂, p̂,q(p̂, p̂)) = 0, gb(p̂, p̂,q(p̂, p̂)) = 0 and for any (pa, pb) ∈ B

ga(pa, pb,q(pa, pb)) = gb(pa, pb,q(pa, pb)) = 0.

By the continuity of the map q, q(pa, pb) converges to q(p̂, p̂) = (q̂, q̂) as pa → p̂ and pb → p̂.

Hence, the workers’ post-investment probabilities of being a high type converge as well.

�

Proof for Proposition 4.2. Throughout the proof, “worker’s type” refers to the worker’s pre-

investment type. We focus on the equilibrium with post-investment beliefs qa > qb and cost

thresholds ca > cb as pb ↑ pa. The argument for the equilibrium in which qb > qa is similar.

We first characterize this equilibrium. Using Ba and Bb derived in the proof of Lemma

4.1, the cost thresholds are:

ca = π
µℓ

µℓ + 1
> cb = π

µ2
ℓ(1− qa)

(µℓ + 1)2
.

where the post investment belief pair (qa, qb) is given by qa = pa + (1 − pa)πF (ca) and

qb = pb + (1 − pb)πF (cb). Note that ci ∈ (0, 1) for each i ∈ {a, b}. Given that ca > cb and

pa > pb, the employer is indeed willing to favor worker a.

Let κ := µℓ(1−qa)
µℓ+1

< 1. Since worker a is favored, a high-type worker a obtains payoff 1,

while a high-type worker b obtains payoff κ. Hence, the ratio of worker b’s to worker a’s

payoff, conditional on each being a high type, is κ.

We next argue that for any realized cost c, a low-type worker b’s payoff is at most

a fraction κ of the low-type worker a’s payoff. Hence, the same holds when taking the

expectation with respect to c.

1. If c > ca, neither low-type worker a nor low-type worker b invests. The ratio of low-type

worker b’s payoff to low-type worker a’s payoff is exactly κ.

2. If cb < c < ca, a low-type worker a is willing to invest but a low-type worker b is

not. If the low-type worker a deviates to no investment, the ratio of low-type worker
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b’s payoff to low-type worker a’s payoff is κ. By investing worker a obtains a strictly

higher payoff. Therefore, the payoff ratio must be strictly lower when the low-type

worker a invests.

3. If c 6 cb, both the low type of worker a and of worker b invest. Ignoring investment cost

c > 0, the payoff ratio of the low-type worker b to that of the low-type worker a is κ.

Once the investment cost is subtracted from both the numerator and the denominator,

the payoff ratio becomes strictly smaller.

�

Proof of Proposition 4.3. Throughout the proof, we set π = 1 without loss, as π merely

scales the benefit from investment Bi(qa, qb) and i’s threshold for investment for each i. Let

i denote the post-investment favored worker, and −i be the discriminated one.

As we take λℓ, λh to infinity, worker i’s benefit from investment converges to 1 under

breakdown learning, while it converges to

B̄i(qi, q−i, p) :=

(1−q−i)
2(qi+p2−2p)
(1−p)2

+ qi − q2
−i

2qi(1− q−i)
,

under breakthrough learning. This function B̄i(qi, q−i, p) increases in qi, and decreases in q−i

and p. Since qi is bounded above by p̄a := pa+(1−pa)π, q−i is bounded below by pb, and p is

bounded below by 0, B̄i(qi, q−i, p) is bounded from above by B̄i(p̄a, pb, 0) =
pb

2
−p̄a((pb−2)pb+2)
2p̄a(pb−1)

,

which is strictly smaller than 1. By continuity, when λℓ, λh are sufficiently large, the post-

investment favored worker invests more under breakdown learning than under breakthrough

learning.

As we take λℓ, λh to infinity, worker −i’s benefit from investment converges to (1 − qi)

under breakdown learning, while it converges to

B̄−i(qi, q−i, p) :=
(1− qi)

(

(2− q−i)q−i + p2 − 2p
)

2(1− q−i)q−i(1− p)2
,

under breakthrough learning. The function B̄−i(qi, q−i, p) increases in q−i, and decreases in
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qi and p. As p converges to zero, the benefit converges to

B̄−i(qi, q−i, 0) =
(1− qi)(2− q−i)

(2− 2q−i)
> 1− qi.

Here, the inequality follows from 0 < q−i < 1. Given that the favored worker i invests more

under breakdown than under breakthrough learning, qi is higher under breakdown as well.

Hence, the discriminated worker’s benefit from investment is higher under breakthrough than

under breakdown when p is small enough and λh, λℓ are large enough. �

B Supplementary material for Section 5

This section extends our baseline model to a two-sided matching market with a continuum

of workers and employers. There is a unit mass of employers, a mass of size α > 1 of a-

workers, and a mass of size β > 0 of b-workers. Employers are ex ante homogeneous. Both

employers and workers are long-lived. They share the same discount rate r > 0. At t = 0,

each worker’s type is drawn independently from other workers’ types. An a-worker’s type is

high with probability pa, and a b-worker’s type is high with probability pb. There is also a

unit mass of identical safe arms available. We assume that pa > pb > p.

Both employers and workers are long-lived. They share the same discount rate r > 0. At

each instant, each employer has one task to allocate and each worker can take up at most

one task.

Matching protocol. At each t > 0, the following frictionless matching protocol takes place:

(i) each unmatched employer is matched randomly with an unmatched worker;

(ii) the matched employer and worker decide simultaneously whether to accept the match;

(iii) if at least one rejects, they return to the unmatched pool and are rematched instanta-

neously;

(iv) if an employer rejects all unmatched workers, she takes a safe arm;

(v) this process ends when each employer is either matched to a worker or takes the safe

arm.
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An employer returns to the unmatched pool if she fires the worker that she is currently

matched to. We assume that all signals are observed publicly. Therefore, all employers

hold the same belief about the type of any worker at any time t. The frictionless matching

protocol ensures that at each instance the most productive workers are matched provided

that their probabilities of being a high type are higher than p.

Task scarcity. When there are more workers than tasks (i.e., α + β > 1), not all workers

are matched immediately at t = 0. Such relative scarcity of tasks is both necessary and

sufficient for spiraling to arise in breakdown learning. To simplify exposition, we impose a

stronger assumption: α > 1.21 This assumption guarantees that only a-workers are matched

at t = 0.

B.1 Breakthrough learning

Once a worker generates a breakthrough, his employer keeps him for the rest of time. To

track how many workers have “secured their jobs”, we let ω(t) ∈ [0, 1] be the mass of workers

who have generated a breakthrough by t, so (1−ω(t)) is the mass of employers who are still

learning about the type of their current match.

At t = 0, all employers are matched to a-workers due to α > 1. Within the next instant,

the belief for those matched a-workers who have not generated a breakthrough drops slightly

below pa. Their employers find it optimal to switch to previously unmatched a-workers, the

belief for whom is pa. This is essentially equivalent to all a-workers being employed and

allocated 1/α < 1 of a task at t = 0.

In the next instant, those a-workers who have generated a breakthrough stay matched

forever. Those who have not are once again allocated a fraction of a task. This process

goes on until the belief for those a-workers without a breakthrough drops to pb. We let Tb

denote this time, which is deterministic. From Tb onward, employers start allocating tasks

to b-workers as well. This Tb is the delay that is experienced by group b uniformly.

We let q(t) denote the belief for a matched worker who has not generated a breakthrough

until time t. For any t ∈ [0, Tb), a mass (α− ω(t)) of a-workers have not generated a

breakthrough. Each is a high type with probability q(t), and is allocated 1−ω(t)
α−ω(t)

∈ (0, 1) of a

21Our analysis extends to the case of α < 1 and α+ β > 1.
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task. Therefore, the evolution of ω(t) follows:

dω(t) = (α− ω(t))q(t)λh
1− ω(t)

α− ω(t)
dt = q(t)λh(1− ω(t))dt and ω(0) = 0. (9)

By the law of large numbers, for any t ∈ [0, Tb), q(t) satisfies:

q(t)(α− ω(t)) + ω(t) = paα =⇒ q(t) =
αpa − ω(t)

α− ω(t)
. (10)

The value Tb is given by q(Tb) = pb.

Starting from Tb, employers who did not have a breakthrough over [0, Tb) start allocating

tasks over a larger set of workers: a-workers who have not generated a breakthrough until

time Tb and all b-workers. The method for solving for ω(t), q(t) is similar. The evolution of

ω(t) is the same as (9). By the law of large numbers, for any t > Tb, q(t) satisfies:

q(t)(α+ β − ω(t)) + ω(t) = paα+ pbβ =⇒ q(t) =
αpa + βpb − ω(t)

α+ β − ω(t)
.

The process ends when either ω(t) reaches 1 or q(t) reaches p, depending on which event

occurs earlier. If ω(t) reaches 1 first, then all employers are matched with workers who have

generated a breakthrough. Otherwise, some employers take safe arms when q(t) drops to p.

Proposition B.1 (Self-correction under breakthroughs). For α > 1 and β > 0, the expected

payoff of an a-worker converges to that of a b-worker as pb ↑ pa.

Proof. We first show that as pb ↑ pa, Tb → 0. By the definition of Tb and the expression for

q(t) in (10), we have that

ω(Tb) =
α(pa − pb)

1− pb
.

Therefore, as pb ↑ pa, ω(Tb) → 0. Using the fact that ω(0) = 0, ω(t) is independent of pb,

and it is strictly increasing in t, we conclude that Tb ↓ 0.

Conditional on reaching Tb without a breakthrough, an a-worker has the same continu-

ation payoff as a b does. As Tb → 0, the probability of a breakthrough over [0, Tb) goes to

zero and so does the flow payoff from being allocated the task over [0, Tb). Hence, the payoff

of an a-worker approaches that of a b-worker as Tb → 0. �
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B.2 Breakdown learning

Under breakdowns, a matched worker stays matched as long as no breakdown occurs. At

time 0, a unit mass of a-workers are matched with employers. When a matched worker

generates a breakdown, his employer replaces him with an a-worker who has never been

tried before. This process goes on until all the a-workers are tried. From that moment on,

an employer who just experienced a breakdown hires a b-worker who has never been tried

before. We let Tb denote the first time that a b-worker is hired. This Tb is again the delay

that is experienced by group b uniformly.

We let ω(t) > 1 be the mass of workers who have been tried before t. Among these

workers, one unit are currently employed, and a mass (ω(t)− 1) of workers have generated

a breakdown before t.

For any t ∈ [0, Tb), the mass of employers who are matched to high-type workers are

paω(t), so 1− paω(t) are matched to low-type workers. Hence, the evolution of ω(t) follows:

dω(t) = (1− paω(t))λℓdt.

This along with the boundary condition ω(0) = 1 pins down ω(t) for any t ∈ [0, Tb):

ω(t) =
1− (1− pa)e

−λℓpat

pa
.

If paα < 1, then Tb is finite and solves ω(Tb) = α. Otherwise Tb is infinity.

Suppose that paα < 1. For any t > Tb, the mass of employers who are matched to

high-type workers are paα + pb(ω(t)− α). Hence, the evolution of ω(t) follows:

dω(t) = (1− paα− pb(ω(t)− α))λℓdt.

This along with the boundary condition ω(Tb) = α pins down ω(t) for any t > Tb:

ω(t) =
1− (1− αpa)e

λℓpb(Tb−t) − α(pa − pb)

pb

This process of hiring untried b-workers ends when either ω(t) reaches α+β or paα+pb(ω(t)−

α) reaches 1, depending on which event occurs earlier. We let Ts denote the time at which

38



this process ends. If ω(t) reaches α + β first, then at time Ts all workers have been tried.

Otherwise, some b-workers are never matched to any employer because all employers are

already matched to high-type workers.

Proposition B.2 (Spiraling under breakdowns). As pb ↑ pa, the limiting ratio of the expected

payoff of a b-worker to that of an a-worker is strictly less than one.

Proof. Suppose first that αpa > 1. A b-worker’s payoff is zero, so the ratio is zero as well.

The statement holds trivially.

Next, let 1 < α < 1/pa. This assumption guarantees that 0 < Tb < ∞. Let V (pi) denote

a worker’s continuation payoff from the time he is first allocated the task. From the proof

of Proposition 3.2, we know that V (pi) = pi + (1 − pi)r/(λℓ + r). An a-worker’s expected

payoff is
1

α

(

V (pa) +

∫ Tb

0

e−rtV (pa) dω(t)

)

.

A b-worker’s expected payoff is

1

β

∫ Ts

Tb

e−rtV (pb) dω(t).

As pb ↑ pa, V (pb) ↑ V (pa). But because each b-worker gets a chance strictly later than any

a-worker, a b-worker’s expected payoff is strictly lower than that of an a-worker. �

Spiraling arises if and only if b-workers are not guaranteed to be allocated the task at

time t = 0. That is, tasks must be relatively scarce. For simplicity, we assumed that α > 1

so that b-workers never get a chance at t = 0. But even if some b-workers get a chance at

t = 0, the expected payoffs of the two groups do not converge as pb ↑ pa for as long as other

b-workers are delayed. Proposition 5.1 shows that the larger is the labor force — i.e., the

larger is the mass of workers relative to the unit mass of tasks — the greater is the inequality

across groups.

Proof for Proposition 5.1. The rest of this argument supposes that pa(α + β) < 1. The

argument for pa(α + β) > 1 is similar, and hence omitted.

Using the expression we have for ω and applying the change of variables µℓ = λℓ/r, we

compute the expected payoffs of workers from each group. The ratio of the expected payoff
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of an a-worker to that of a b-worker is:

−

β(µℓpb + 1)

(

(µℓ + 1)
(

pa−1
αpa−1

) 1
µℓpa + µℓ(αpa − 1)

)

(

αpa−1
αpa+βpb−1

) 1
µℓpb

αµℓ(µℓpa + 1)

(

(αpa − 1)
(

αpa−1
αpa+βpb−1

) 1
µℓpb − αpa − βpb + 1

) .

We take the limit of this ratio as pb ↑ pa and differentiate with respect to α and β. By

applying the change of variables z = 1−pa
1−αpa

> 1 and y = 1−αpa
1−pa(α+β)

> 1 to replace α and β

and simplify the algebra, it follows that these two derivatives are both positive. �

C Supplementary material for Section 6

C.1 Setup

This section introduces endogenous, flexible wages in the context of the two-sided market

introduced in Section 5 and Appendix B. We show that the self-correcting property of break-

throughs and the spiraling property of breakdowns still hold. In particular, wage flexibility

is insufficient to prevent spiraling under breakdowns.

In this section, we use i ∈ [0, α + β] to index a worker. Worker i is from group a if

i ∈ [0, α] and from group b if i ∈ (α, α+ β]. We use j ∈ [0, 1] to index an employer. At each

instant, each employer demands one unit of labor and each worker supplies one unit of labor.

There is also a unit mass of identical safe arms. An employer takes a safe arm whenever not

matched to a worker. We assume that no one observes the workers’ realized types and all

learning is public.

Stage-game matching. We consider one-to-one matching between workers and employers.

A stage-game matching describes how workers are matched to employers along with a wage

for each matched pair. We assume that workers are protected by limited liability, so wages

are nonnegative.

Let Dij ∈ {1, 0} indicate whether worker i and employer j are matched to each other, and

if they are let Wij > 0 denote the wage. If Dij = 1, worker i’s payoff is Wij and employer j’s

payoff is piv −Wij , where pi denotes the probability that worker i’s type is high. If Dij = 0

for all j, worker i is unmatched and gets zero payoff. If Dij = 0 for all i, employer j takes a

safe arm and gets a fixed payoff of s > 0, which corresponds to a belief threshold ps := s/v.
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We assume that ps < pb. Let D be the set of all stage-game matchings.

Dynamic matching. Let H := ∪t>0Ht be the set of all histories and Ht the set of all

time-t histories. All signals are publicly observed, hence a time-t history consists of all past

matchings and realized signals until t. A dynamic matching µ = (µt)t>0 specifies a lottery

over stage-game matchings for any history, i.e., µt : Ht → ∆(D) for each t.

Solution concept. We first adopt the solution concept in Shapley and Shubik (1971) and

define stable stage-game matchings. In Appendix C.2 we characterize the set of such match-

ings. Given a stage-game matching (D,W ), (i, j) is called a blocking pair if they strictly

prefer to be matched to each other at some wage w > 0 rather than following (D,W ).

Definition 1. A stage-game matching (D,W ) is stable if

(i) there exists no employer j who is matched to some i such that j strictly prefers to take

a safe arm instead;

(ii) there exists no blocking pair.

Next we define dynamic stability based on the notion of a stable convention in Ali and Liu

(2020).22 In Appendix C.3 we show that repeating a stable stage-game matching is dynami-

cally stable in both learning environments. For a given dynamic matching µ, let µ|h denote

the continuation matching after some history h.

Definition 2. A dynamic matching µ is dynamically stable if at every t and every history

ht ∈ Ht, there exists no dt > 0, however small, and

(i) no matched employer j under µ|ht who strictly prefers to take a safe arm over [t, t+dt)

and then revert to µ|ht+dt
;

(ii) no worker-employer pair (i, j) who strictly prefer to be matched to each other at some

wage w > 0 over [t, t + dt) and then revert to µ|ht+dt
;

(iii) no matched worker i under µ|ht who strictly prefers to be unmatched over [t, t + dt)

and then revert to µ|ht+dt
.

22Even though not crucial to our results, we assume that deviation wages are perfectly observable to all.
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C.2 Stable stage-game matching

Recall that pi denotes the probability that worker i’s type is high. Let G denote the CDF

of the distribution of pi for i ∈ [0, α + β]. Hence, (α + β)G(p) is the mass of workers with

pi 6 p. At time 0, pi is either pa or pb, so G(p) equals 0 if p < pb,
β

α+β
if pb 6 p < pa, and

1 if p > pa. As workers are matched to employers so more is learned about their types, G

evolves over time.

In this subsection, we characterize the set of stable stage-game matchings for a fixed

G. There exists a unique marginal belief pM such that worker i is matched if pi > pM and

unmatched if pi < pM . Worker i’s wage is a linear function of pi.

Lemma C.1 (Equal profit across employers and linear wage). In any stable stage-game

matching,

1. all employers make the same profit. If some employers take safe arms, then this profit

is s;

2. if worker i is matched, his wage takes the form of piv + c1, where c1 is a constant.

Proof. We first prove that employers make the same profit across all worker-employer pairs.

Suppose that workers i1 and i2 are matched to employers j1 and j2 at wages w1 and w2

respectively. Let p1 and p2 be, respectively, the probabilities that i1 and i2 are high types.

Suppose that employer j1 makes a strictly higher profit than j2:

vp1 − w1 > vp2 − w2.

Worker i1 and employer j2 can form a blocking pair at wage w1 + ǫ. Worker i1’s payoff

improves by ǫ. Employer j2’s profit improves to vp1 − w1 − ǫ > vp2 − w2. Hence, employers

must make the same profit across all worker-employer pairs. This implies that the wage for

worker i must take the form of piv + c1.

What remains to be shown is that if some employers take safe arms, then all employers

make a profit of s. If an employer makes more than s, he must be matched to a worker.

Then an employer who is currently taking a safe arm can form a blocking pair with this

worker. �
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Based on Lemma C.1, a stable stage-game matching is without loss characterized by

(d(p), w(p)), where d(p) specifies the fraction of workers with pi = p who are matched and

w(p) = vp+ c1 is the wage.

We next show that employers are matched to the most productive workers, provided that

these workers are better than safe arms. We need to discuss two cases, depending on whether

there exists a unit mass of workers who are preferred to safe arms. In order to distinguish

these two cases, we look at the unit mass of most productive workers, and let p∗ correspond

to the least productive worker in this mass.

Definition 3. Let p∗ be the highest probability p such that the mass of workers with pi > p

is greater than 1:

(α + β)

∫ 1

p∗
dG(s) > 1, and (α + β)

∫ 1

p

dG(s) < 1, ∀p > p∗.

Lemma C.2 shows that worker i is matched if pi > max{p∗, ps} and unmatched if pi <

max{p∗, ps}. Therefore, we call max{p∗, ps} the marginal belief and let pM denote the

marginal belief.

Lemma C.2 (Most productive workers are matched).

1. Suppose that p∗ > ps. Then d(p) equals 1 if p > p∗, and 0 if p < p∗. If there is no atom

at p∗, then d(p∗) can take any value in [0, 1]. If there is an atom at p∗, then d(p∗) is

given by:

(1−G(p∗)) (α + β) + d(p∗) (G(p∗)−G(p∗−)) (α + β) = 1.

2. Suppose that p∗ 6 ps. Then d(p) equals 1 if p > ps, and 0 if p < ps. Moreover, d(ps)

can take any value in [0, 1] subject to:

(1−G(ps)) (α + β) + d(ps) (G(ps)−G(ps−)) (α + β) 6 1.

Proof. We prove the first part in two steps.

1. If a less productive worker is matched, then a more productive worker must be matched.

By way of contradiction, suppose that a p1 worker is matched and a p2 worker is not,
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and that p1 < p2. The employer who is matched to the p1 worker can form a blocking

pair with the p2 worker.

2. If p∗ > ps, no employer takes a safe arm. Suppose otherwise. Then there exists an

unmatched worker i with pi > p∗. Then an employer who is taking a safe arm can

form a blocking pair with this worker i.

We now prove the second part. Suppose that a worker’s probability of being a high type

is p > ps and he is unmatched. The mass of workers whose pi are weakly above p is strictly

smaller than 1. Hence, there exists an employer who is either matched to a worker with

pi < p or taking a safe arm. This employer forms a blocking pair with the unmatched worker

p. �

We now fully characterize the wage function for matched workers. If p∗ > ps, we must

distinguish two cases depending on whether there exists an unmatched worker whose belief

is arbitrarily close to p∗. If such a worker exists, then the wage function is pinned down

uniquely. Otherwise, if there is a belief gap between the least productive matched worker

and the most productive unmatched worker, wage can take a range of values. If p∗ 6 ps,

there always exists a safe arm for an employer to take, so the wage function is pinned down

uniquely. Whenever unique, the wage for worker i is (pi − pM)v.

Lemma C.3 (Wage in stable stage-game matchings).

1. Suppose that p∗ > ps.

(1.a) If for any ǫ > 0,
∫ p∗

p∗−ǫ

(1− d(s)) dG(s) > 0,

then c1 = −vp∗ so w(pi) = (pi − p∗)v.

(1.b) Otherwise, let p∗∗ be the supremum belief among workers and safe arms whose

belief is strictly smaller than p∗. Then the constant c1 in w(pi) = vpi + c1 can

take any value in [−vp∗,−vp∗∗].

2. Suppose that p∗ 6 ps. Then w(pi) = (pi − ps)v.
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Proof. We begin with showing that the wage function must be w(pi) = v(pi−p∗) in the case

of (1.a). First, the wage cannot be lower than this because of limited liability. Second, if

w(p∗) > 0, then the employer that is matched to p∗ worker can form a blocking pair with an

unmatched worker whose pi is arbitrarily close to p∗.

We now show (1.b). If there exists ǫ > 0 such that

∫ p∗

p∗−ǫ

(1− d(s))dG(s) = 0,

then it must be that the fraction of workers whose belief is weakly above p∗ is exactly 1. We

argue that the constant c1 in w(pi) = vpi + c1 can be anything in:

c1 ∈ [−vp∗,−vp∗∗].

Pick any c1 in this range. All the employers get the same profit. Hence, an employer cannot

form a blocking pair with another worker that is hired, since to attract that worker the

employer has to offer a higher wage than vpi + c1. This will lead to a lower profit for the

employer. Also, the employer cannot form a blocking pair with a worker that is not hired.

The most profit the employer can make is vp∗∗, which is smaller than his current profit.

For the case of p∗ 6 ps, the proof is similar to that for the case of (1.a), so is omitted. �

C.3 Stable dynamic matching

So far we characterized the set of stable stage-game matchings for any given G. The CDF

G summarizes how much information there is about workers’ types. Our characterization

delineates how this information shapes workers’ and employers’ payoffs. In the dynamic

setting, G evolves endogenously over time due to learning about workers’ types. This section

shows that repeating a stable stage-game matching after any history is dynamically stable.

Lemmata C.2 and C.3 showed that for certain G’s there exist multiple stable stage-

game matchings. Whenever such multiplicity arises, we select a stable stage-game matching

that (i) leaves unmatched marginal-belief workers as much as possible, and (ii) assigns the

employer-preferred wage. Such multiplicity arises on path very infrequently — in fact, wage

multiplicity arises only at one point in time. Moreover, the selection criterion that we adopt

is for ease of exposition only: the propositions below hold even with a different selection.
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Definition 4. Fix G. Let pM(G) denote the marginal belief. Let (d∗(p|G), w∗(p|G)) be a

stable stage-game matching that satisfies the following conditions:

1. d∗(pM(G)|G) = 0 if d(·) is multi-valued at p = pM(G) in Lemma C.2;

2. w∗(p|G) = (p−pM (G))v is the employer-preferred wage function if w(·) is multi-valued

in Lemma C.3.

Pick any history h ∈ H. Let G(h) denote the CDF of the distribution of pi after

history h. Let µ∗ be the matching that always assigns the stable stage-game matching

(d∗(·|G(h)), w∗(·|G(h))) after every history h.

Proposition C.1. Under either breakthrough or breakdown learning, µ∗ is dynamically sta-

ble.

Proof. Pick any ht ∈ Ht. We want to show that conditions (i)-(iii) in Definition 2 are

satisfied in each learning environment.

(i) If employer j is matched to a worker under µ∗|ht, his flow payoff on path is at least

s. The distribution G(ht+dt), and hence j’s continuation payoff from t + dt on, does

not depend on j’s deviation. Hence, he does not strictly prefer to take a safe arm over

[t, t+ dt) and then revert to µ∗|ht+dt
in either learning environment.

(ii) Suppose that worker i and employer j are not matched to each other under µ∗|ht. We

next show that there is no wage w > 0 such that both i and j strictly prefer to be

matched to each other at flow wage w over [t, t + dt) and then revert to µ∗|ht+dt
in

either learning environment.

If i is matched to another employer under µ∗|ht , w needs to be strictly higher than

worker i’s current wage. This implies that employer j’s flow payoff will be strictly

lower than his current flow payoff. Hence, j does not strictly prefer to pair with i over

[t, t+ dt).

If i is not matched, this means that pi 6 pM(G(ht)). But employer j’s flow payoff on

path is at least pM(G(ht))v. So employer j will not find it strictly profitable to be

matched to i.
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(iii) Suppose that worker i is matched at history ht according to µ∗. Let p(t) be this

worker’s probability of being a high type at history ht. We next show that he does not

strictly prefer to stay unmatched for [t, t + dt) and then revert to µ∗|ht+dt
.

(a) We first consider breakdown learning. Pick any τ > t + dt. Let Q(τ) denote

the probability that this worker has generated a breakdown in [t, τ), and p(τ)

denote the probability that this worker is a high type at time τ conditional on no

breakdown in [t, τ). By Bayes rule,

(1−Q(τ))p(τ) = p(t).

The worker’s expected flow payoff at time τ is

max
{

0, (1−Q(τ))
(

p(τ)− pM(G(hτ ))
)}

= max

{

0, p(t)

(

1−
pM(G(hτ ))

p(τ)

)}

(11)

which is weakly increasing in p(τ). Staying unmatched over [t, t + dt) and then

reverting to µ∗|ht+dt
only makes p(τ) lower than its value on path, so the worker

will not reject the match.

(b) We next consider breakthrough learning. Pick any τ > t + dt. Let Q̃(τ) denote

the probability that this worker has generated a breakthrough in [t, τ), and p(τ)

denote the probability that this worker is a high type at time τ conditional on no

breakthrough in [t, τ). By Bayes rule,

Q̃(τ) + (1− Q̃(τ))p(τ) = p(t).

The worker’s expected flow payoff at time τ is

Q̃(τ)(1− pM(G(hτ )))v + (1− Q̃(τ))max
{

0, (p(τ)− pM(G(hτ )))v
}

= max
{

Q̃(τ)(1− pM(G(hτ )))v, (p(t)− pM(G(hτ )))v
}

which is weakly increasing in Q̃(τ). Staying unmatched over [t, t + dt) and then

reverting to µ∗|ht+dt
only makes Q̃(τ) lower than its value on path, so the worker

will not reject the match.
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Limited liability is not only sufficient, but also necessary for µ∗ to be stable. If the wage

can drop below zero, then workers have an incentive to be matched at negative wages in

order to speed up learning about their type. Intuitively, the flow payoff to a worker of belief

pi is max
{

v
(

pi − pM(G(ht))
)

, 0
}

after history ht. This flow payoff is convex in pi. Hence,

splitting a worker’s prior belief strictly benefits this worker.

Our last proposition shows that the contrast between breakthrough and breakdown en-

vironments in terms of group inequality continues to hold. In particular, flexible wage does

not close the payoff gap between group a and b in the breakdown environment.

Proposition C.2. Given matching µ∗, as pb ↑ pa the expected payoff of an a-worker con-

verges to that of a b-worker under breakthroughs but not under breakdowns.

Proof. Let Tb be as defined in Appendix B.

Consider first the breakthrough environment. Because α > 1, for an initial period t ∈

[0, Tb), only a-workers are matched. If an a-worker has not achieved a breakthrough by Tb,

his probability of being a high type is pb. In this case, he has the same continuation payoff

as a b-worker does. As pb ↑ pa, Tb → 0. Hence, worker a’s payoff advantage vanishes as well.

We now consider the breakdown environment. Equation (11) in the proof of Proposition

C.1 established that a worker who has been matched for longer has a higher expected flow

payoff than a worker who has been matched for a shorter period. Hence, at any t the expected

flow payoff of an a-worker is strictly higher than that of a b-worker. Moreover, group delay

Tb does not converge to zero as pb ↑ pa, hence an a-worker’s payoff advantage due to [0, Tb)

does not converge to zero either. Hence, an a-worker’s expected payoff is strictly higher than

a b-worker’s. �

C.4 Wage gap under breakdown learning

We let Wa(τ) (resp., Wb(τ)) denote the expected wage of a representative a-worker (resp., a

representative b-worker) at any fixed time τ > 0. To simplify exposition, we assume that (i)

α > 1, (ii) αpa < 1, and (iii) αpa + βpb > 1. The first two conditions ensure that the delay

for group b is positive but finite, i.e., 0 < Tb < ∞. The third condition ensures that the pool

of new workers is not exhausted before all employers identify a high-type worker. That is,
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there are more high-type workers than employers available. At the end of this section, we

discuss the case of αpa + βpb 6 1.

We first solve for the expected flow wage at time τ of an i-worker first matched at time

t 6 τ . From expression (11), this expected flow wage is given by

pi

(

1−
pM(τ)

q(pi, τ − t)

)

,

where pi is the prior belief of an i-worker, pM(τ) is the marginal belief at time τ , and

q(pi, τ − t) is the employer’s belief at time τ about an i-worker first matched at time t 6 τ

who has not generated a breakdown over [t, τ). The marginal belief pM(τ) is given by

pM(t) =







pa if t 6 Tb

pb otherwise,

where the delay for group b is Tb =
1

λℓpa
log
(

1−pa
1−αpa

)

. Moreover,

q(pi, τ − t) =
p

pi + (1− pi)e−λℓ(τ−t)
.

In order to calculate the expected wage of a representative i-worker, we also need the

density over the time at which this i-worker is first matched. From Appendix B.2, we have

the expression for ω(t), the mass of workers who have been tried until time t:

ω(t) =















1− (1− pa)e
−λℓpat

pa
if t 6 Tb

1− (1− αpa)e
λℓpb(Tb−t) − α(pa − pb)

pb
otherwise.

,

A unit mass of a-workers are matched at time 0. For any t ∈ (0, Tb), new a-workers are tried

at rate ω′(t). For any t > Tb, new b-workers are tried at rate ω′(t). Therefore, for any τ > 0,

the expected wage of a representative a-worker is

1

α

(

pa

(

1−
pM(τ)

q(pa, τ)

)

+

∫ Tb∧τ

0

pa

(

1−
pM(τ)

q(pa, τ − t)

)

ω′(t) dt

)
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which simplifies to:

Wa(τ) :=



















(1− pa)
(

1− e−λℓpaτ
)

α
if τ 6 Tb

pb(αpa − 1)
(

pa−1
αpa−1

) 1
pa

e−λℓτ

α
− papb + pa otherwise.

The calculation for the representative b-worker is similar. For any τ < Tb, no b-worker is

tried, so the expected wage of the representative b-worker is 0. For τ > Tb, it is:

1

β

∫ τ

Tb

pb

(

1−
pM(τ)

q(pb, τ − t)

)

ω′(t) dt.

Hence,

Wb(τ) :=



















0 if τ 6 Tb

(αpa − 1)

(

(

pa−1
αpa−1

)

pb
pa

e−λℓpbτ − pb

(

pa−1
αpa−1

)
1
pa

e−λℓτ + pb − 1

)

β
otherwise.

At the start of the horizon, there exists a wage gap between groups because Wa(0) > 0 =

Wb(0). Moreover, the wage gap persists over the entire horizon and it does not disappear

even in the long run, as the following lemma shows. This is because even as τ → +∞, there

exist a mass of b-workers who never get tried.

Proposition C.3 (Persistent wage gap under breakdowns). Suppose that pa(α+β) > 1. In

the limit pb ↑ pa,

1. for any τ ∈ [0, Tb), the wage gap Wa(τ)−Wb(τ) is strictly increasing.

2. for any τ ∈ [Tb,∞), the wage gap Wa(τ) −Wb(τ) is first strictly increasing and then

strictly decreasing. The limit limτ→∞ (Wa(τ)−Wb(τ)) is strictly positive.

Proof. We further assume that α > 1 and αpa < 1, so Tb ∈ (0,∞). If α < 1, then Tb = 0. If

αpa > 1, then Tb = ∞. The proofs for both cases are similar, so are omitted.

For any τ ∈ [0, Tb), the wage gap Wa(τ) − Wb(τ) is simply Wa(τ), which is strictly

increasing in τ .
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For any τ ∈ [Tb,∞), the wage gap is increasing in τ if and only if

(α + β)
(

1−pa
1−αpa

)
1
pa

−1

e−λℓ(1−pa)τ

α
> 1.

The LHS is decreasing in τ , so this inequality holds when τ is small enough. Since the LHS

equals zero when τ → ∞ and the inequality holds when τ = Tb, the wage gap is first strictly

increasing and then strictly decreasing. In the limit of τ → ∞, the wage gap is strictly

positive:

lim
τ→∞

(Wa(τ)−Wb(τ)) =
(1− pa)(αpa + βpa − 1)

β
> 0.

�

Figure 3 illustrates the wage dynamics and the wage gap characterized in Proposition

C.3.

wage

t
0

Wa(t)

Wb(t)

Tb

wage gap

t
0

Wa(t)−Wb(t)

Tb

Figure 3: Wage dynamics and wage gap: pa = 1/2, λℓ = 1, α = 5/4, β = 1

If paα+ pbβ 6 1 instead, all b-workers will obtain a chance in the long run. Even though

for each τ > 0 there exists a non-zero wage gap, in the limit the expected flow wages of the

two groups converge.

D Proofs for Section 7.1

We consider here the case of a general (λh, λℓ) ∈ R
2
+. Based on whether the arrival of a

signal is more likely to suggest a high or a low type, we distinguish two classes of learning
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environments:

(i) a signal is an inconclusive breakthrough if λh > λℓ > 0;

(ii) a signal is an inconclusive breakdown if λℓ > λh > 0.

The case of λh = λℓ > 0 corresponds to uninformative signals.

Proposition D.1 (Self-correcting property of inconclusive breakthroughs). For any λh > λℓ,

the two workers’ payoffs converge as pa ↓ pb.

Proof. Let Ui(pa, pb) be worker i’s payoff given the belief pair (pa, pb). For any pa > pb, the

principal first uses worker a for a period of length t∗. If no breakthrough occurs in [0, t∗), the

principal’s belief toward worker a drops to pb. Let f(s) for s ∈ [0, t∗) be the density of the

random arrival time of the first breakthrough from worker a. We let pa(s) be the belief that

θa = h if there is no breakthrough up to time s, and let j(pa(s)) be the belief that θa = h

right after the first breakthrough at time s. worker a’s payoff is given by

∫ t∗

0

f(s)
(

1− e−rs + e−rsUa(j(pa(s)), pb)
)

ds+

(

1−

∫ t∗

0

f(s) ds

)

(

1− e−rt∗ + e−rt∗Ua(pb, pb)
)

.

worker b’s payoff is given by

∫ t∗

0

f(s)e−rsUb(j(pa(s)), pb) ds+

(

1−

∫ t∗

0

f(s) ds

)

e−rt∗Ub(pb, pb).

As pa ↓ pb, t
∗ converges to zero. Both players’ payoffs converge to Ua(pb, pb) = Ub(pb, pb). �

Proposition D.2 (Spiraling property of inconclusive breakdowns). For any λh < λℓ, the

two workers’ payoffs do not converge if r2 − (1− 2pa)r(λℓ − λh)− λhλℓ > 0 or equivalently:

λh

λh + r
pa +

λℓ

λℓ + r
(1− pa) <

1

2
.

Proof. Let Ui(pa, pb) be worker i’s payoff given the belief pair (pa, pb). We let pa(s) be the

belief toward worker a if there is no breakdown up to time s, and let j(pa(s)) be the belief

toward him right after the first breakdown at time s.

For any pa > pb, the principal begins with worker a, and uses worker a exclusively if no

breakdown occurs. We let f(s) = paλhe
−λhs + (1 − pa)λℓe

−λℓs be the density of the arrival
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time s ∈ [0,∞) of the first breakdown from worker a. Correspondingly, 1 − F (t) is the

probability that no breakdown occurs before time t. For any t > 0, we can write worker a’s

payoff as follows:

∫ t

0

f(s)
{

1− e−rs + e−rsUa (j(pa(s)), pb)
}

ds+ (1− F (t))
(

1− e−rt + e−rtUa(pa(t), pb)
)

.

We can write worker b’s payoff as follows:

∫ t

0

f(s)
{

e−rsUb (j(pa(s)), pb)
}

ds+ (1− F (t))e−rtUa(pa(t), pb).

The payoff difference between a and b is:

∫ t

0

f(s)
(

1− e−rs + e−rs (Ua (j(pa(s)), pb)− Ub (j(pa(s)), pb))
)

ds

+ (1− F (t))
(

1− e−rt + e−rt (Ua(pa(t), pb)− Ub(pa(t), pb))
)

.

We claim that Ua(pa, pb)−Ub(pa, pb) > −1 since Ui(pa, pb) is in the range [0, 1] for any i, pa, pb.

Therefore, the payoff difference is at least:

H(t) :=

∫ t

0

f(s)
(

1− 2e−rs
)

ds+ (1− F (t))
(

1− 2e−rt
)

.

Since we can choose any t, the payoff difference is at least suptH(t). Note that H(0) = 0,

and H(∞) > 0 if and only if r2 − (1− 2pa)r(λℓ − λh)− λhλℓ > 0. �
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