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Abstract

A sender persuades a receiver to accept a project by disclosing information about a

payoff-relevant quality. The receiver has private information about the quality, referred

to as his type. We show that the sender-optimal mechanism takes the form of nested

intervals: each type accepts on an interval of qualities and a more optimistic type’s

interval contains a less optimistic type’s interval. This nested-interval structure offers

a simple algorithm to solve for the optimal disclosure and connects our problem to the

monopoly screening problem. The mechanism is optimal even if the sender conditions

the disclosure mechanism on the receiver’s reported type.
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1 Introduction

Sender-receiver games model situations in which an informed party (the sender) tries to

influence the action of another party (the receiver). Such games are usually analyzed using

cheap-talk equilibria. The more recent information-design literature assumes commitment

power on the sender’s side and looks for the sender’s optimal disclosure mechanism. In this

paper, we consider the information design problem in an environment in which the receiver

has access to external sources of information.

For instance, an entrepreneur tries to convince an insider investor to fund his project. The

insider investor observes the outcome of any experiment done by the entrepreneur to evaluate

the project’s quality (Diamond (1984), Diamond (1991)). The investor can also generate

information by running his own experiments and becoming privately informed (Azarmsa
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and Cong (2018)). In a different example, a lobbyist (e.g., an industry association) tries to

sway a policymaker’s decision and gets involved in the design of scientific studies that he

funds. The policymaker also conducts an internal investigation to gather information about

the policy issue and becomes privately informed (Minaudier (2018)). In this paper we study

how to design a disclosure mechanism when the receiver has private information about the

project or policy issue.

Environment. We consider an environment with two players: the sender and the receiver.

The sender promotes a project to the receiver, who decides whether to accept or reject

it. The receiver’s payoff from accepting increases with the project’s quality. His payoff is

normalized to zero if he rejects. Therefore, there is a quality threshold such that the receiver

benefits from the project if the quality is above the threshold, and loses otherwise. The

sender, on the other hand, simply wants the project to be accepted.

The receiver does not know the quality, but has access to an external information source.

The information from this source is the receiver’s type. We assume that the higher the quality,

the more likely it is that the receiver has a higher rather than a lower type. Correspondingly,

a higher receiver’s type is more optimistic that the quality favors a decision to accept than a

lower type is. The sender designs a disclosure mechanism to reveal more information about

the quality and can commit to this mechanism. The receiver updates his belief based on his

private information and the sender’s signal. He then takes an action: to accept or to reject.

Main results. To illustrate the structure and the intuition of the optimal mechanism, we

consider the case in which the receiver has two possible types: high or low. The sender could

design a pooling mechanism under which both types of the receiver always take the same

action after any signal. The sender could also design a separating mechanism under which,

after some signal, only the high type (who is more optimistic about the quality) accepts.

When the receiver’s external information is sufficiently informative, the high type is much

more optimistic and thus much easier to persuade than the low type, which suggests that a

separating mechanism may provide a higher payoff to the sender.

Under any separating mechanism, the high type will accept whenever the low type ac-

cepts. In addition, the high type will accept for some other qualities. Our main result states

that the optimal separating mechanism takes on a nested-interval structure. This structure

has two key properties. First, the set of qualities for which each type accepts is an interval.

Second, the high type’s interval contains the low type’s. These two properties imply that

the high type is the only type that accepts when the quality is either quite good or quite

bad.

The interval structure translates to an intuitive rule of optimal disclosure. The sender
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pushes for the project to be accepted by both types for the intermediate qualities. However,

when the quality is either quite good or quite bad, the sender pools these qualities and lets

the receiver decide based on his own private information.

Pooling the extreme types of the sender in an environment with a privately informed

receiver is a phenomenon that has been discussed in recent papers. In the context of ad-

vertising, Mayzlin and Shin (2011) argue that ads for high-quality products and low-quality

products tend to contain no attribute information about the product. In contrast, ads for

medium-quality products contain specific product attributes. The rationale is that an ad

with no attributes invites consumers to search, which is likely to uncover positive informa-

tion for high-quality products. In the market for prescription drugs, Bradford, Turner and

Williams (2018) study the rise in off-label use of prescription drugs by physicians. While

the FDA’s regulations restrict marketing of a drug to only the indications for which it was

approved after its efficacy was established, physicians may prescribe it off-label to treat other

indications.1 Thus, a drug company that wishes to sell a drug for indication A can either

apply and run efficacy trials for indication A, or apply for indication B and, if successful,

support the use of the drug for off-label use for indication A. Due to the FDA restrictions

on marketing, the sales of the drug for indication A in the second approach will depend

on physicians’ knowledge about the drug. Bradford, Turner and Williams (2018) point out

that, compared to the on-label use, “off-label use may give a patient either the highest-quality

option or a lower-quality option.”

The standard explanation for pooling the extreme types of the sender is countersignaling

(e.g., Feltovich, Harbaugh and To (2002)). In a countersignalling equilibrium, such pooling is

tied to the incentives of different sender’s types in the equilibrium; for example, high-quality

students choose no education (as do low-quality students) to save the cost of education and

to separate themselves from medium-quality students. We give a different explanation for

this phenomenon. In our environment, the sender faces a design problem, and pooling the

extreme types of the sender is tied to the receiver’s incentives.

In our environment with more than two receiver’s types, we show that the optimal dis-

closure mechanism has the following structure: (i) each receiver’s type is endowed with an

interval of qualities under which this type accepts; (ii) a lower type’s acceptance interval is

a subset of a higher type’s acceptance interval. This interval structure gives us a simple al-

gorithm to find the optimal disclosure: we only need to find the endpoints of the acceptance

interval of each receiver’s type.

1Bradford, Turner and Williams (2018) estimate that the rate of off-label use has risen from 29.9% to
38.3% from 1993 to 2008.
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Moreover, the interval structure offers a natural connection between the persuasion prob-

lem and the monopoly screening problem analyzed in Mussa and Rosen (1978). We divide

the qualities into “positive qualities” and “negative qualities,” depending on the sign of the

receiver’s payoff from accepting. We can interpret the receiver’s payoff from accepting on

an interval of positive qualities as a buyer’s utility from consuming some quantity, while the

receiver’s payoff from accepting on an interval of negative qualities is the buyer’s disutility

from paying some price. The receiver’s level of optimism (i.e., his type) corresponds to how

much the buyer values quantity. Once we use our theorem to impose the interval structure,

the sender’s problem in our setup has the same structure as the monopoly screening problem.

In the baseline model, we adopt relatively simple payoff functions in order to illustrate the

essence of our solution. Later on, we extend the results to more general setups by allowing

both sender’s and receiver’s payoffs to depend on both the quality and the receiver’s type.

We also show that our solution remains optimal in the environment in which the receiver

first reports his type and the sender can disclose different information to different reported

types.

Intuition for the interval structure. We again illustrate the intuition with the binary-

type case. The acceptance set of each type—the set of qualities for which this type accepts—

includes some positive and some negative qualities.

Consider a fixed receiver’s type. Suppose that the sender wants to provide a given positive

payoff to the receiver from accepting some positive qualities. In order to maximize the

probability that the receiver accepts, the sender should recommend the positive qualities that

are closest to the threshold. This is because the receiver’s payoff from accepting increases in

the quality. Similarly, for a given negative payoff to the receiver from accepting some negative

qualities, the sender should recommend the negative qualities closest to the threshold. This

argument suggests that the set of qualities for which each type accepts is an interval that

contains the threshold.

We then fix the positive qualities for which the high type accepts. By excluding some of

these positive qualities from the low type, the sender can provide the high type with some

surplus over mimicking the low type. For a given surplus to the high type, the sender wants

to choose the qualities to exclude from the low type in a way that causes the least damage

to the low type. We claim that the sender should exclude the highest qualities from the low

type. This is because the low type believes these qualities to be quite unlikely. Similarly,

we fix the negative qualities for which the high type accepts. By excluding some of these

negative qualities from the low type, the sender can incentivize the low type to follow the

acceptance recommendation. However, excluding some negative qualities increases the high
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type’s incentive to mimic the low type. Excluding the lowest qualities creates the smallest

increase in the high type’s incentive to mimic the low type. This is because the high type

believes these qualities to be quite unlikely. These two arguments show that not giving

the low type the extreme qualities in the high type’s acceptance set is the cheapest way to

maintain the incentives for different types.

In order to complete the proof, we need to achieve two properties simultaneously: (i)

that each type’s acceptance set is an interval, and (ii) that the qualities for which only the

high type accepts are the extreme qualities in his acceptance set. The key observation is that

these two desirable properties are compatible with each other. Indeed, if an interval strictly

contains another interval, then the set of qualities in the former that are not included in the

latter are precisely the extreme qualities on both sides.

Related literature. Our paper is related to the literature on information design. Rayo

and Segal (2010) and Kamenica and Gentzkow (2011) study optimal persuasion between

a sender and a receiver.2 We study the information design problem in which the receiver

has private information about the quality. This is motivated by the observation that the

receiver has multiple sources of information. Kamenica and Gentzkow (2011) extend the

geometric method to situations in which the receiver has private information. Nonetheless,

it is generally difficult to solve for the optimal mechanism using the geometric method. Our

approach enables us to explicitly solve for the optimal mechanism.

Kolotilin (2018) also examines optimal persuasion when the receiver has private infor-

mation. He provides a linear programming approach and establishes the conditions under

which either full or no revelation is optimal. Kolotilin et al. (2017) (hereafter KMZL) assume

that the receiver privately learns about his threshold for accepting. The receiver’s thresh-

old is independent of the quality. Au (2015) studies a similar setting where the receiver’s

private information is independent of the quality. The sender cannot commit to future in-

formation disclosure. Our paper differs in that the receiver’s type is informative about the

quality. Bergemann and Morris (2018) provide the incentive conditions for a decision rule to

be implementable by the sender both when he can elicit the receiver’s private information

and when he cannot (propositions 2 and 3). They show that these two scenarios admit the

same set of implementable decision rules with a binary state space (a single receiver and a

binary action space), but the equivalence breaks down with more than two states. Azarmsa

and Cong (2018) examine the optimal disclosure by an entrepreneur to a privately informed

insider investor, with a focus on information hold-up and security design.

2Rayo and Segal (2010) assume that the receiver’s taste is his private information and examine optimal
persuasion when all types observe the same signal by the sender.
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In terms of our assumption about the receiver’s private information, our paper is closely

related to Li and Shi (2017) and to Bergemann, Bonatti and Smolin (2018). Like ours, both

papers assume that the buyer has private information about the quality. Li and Shi (2017)

consider a seller who sells a product to a buyer whose type is his information about the

quality. For each type of buyer, the seller designs an experiment along with a strike price

and an advance payment. They show that disclosing different information to different types

dominates full disclosure. Bergemann, Bonatti and Smolin (2018) consider a monopolist who

sells experiments to a buyer. The monopolist designs a menu of experiments and a tariff

function to maximize his profit. Both papers examine the optimal design when the seller

can disclose different information to different types. In contrast, we consider both settings in

which the sender discloses the same information to all types, and those in which the sender

discloses different information to different types. Moreover, we focus on settings in which

transfers are not allowed.

Our model admits both the interpretation of a single receiver and that of a contin-

uum of receivers. For this reason, our paper is also related to information design with

multiple receivers. Lehrer, Rosenberg and Shmaya (2010), Lehrer, Rosenberg and Shmaya

(2013), Bergemann and Morris (2016a), Bergemann and Morris (2016b), Mathevet, Perego

and Taneva (2018), and Taneva (2018) examine the design problem in a general environment.

Inostroza and Pavan (2018) study persuasion in global games. Our paper is most closely

related to the work in Arieli and Babichenko (2017), which studies optimal persuasion when

receivers have different thresholds for acceptance. They assume that receivers’ thresholds

are common knowledge, so there is no private information.

Our paper is also related to cheap talk games (Crawford and Sobel (1982)) with a privately

informed receiver (e.g., Seidmann (1990), Watson (1996), Olszewski (2004), Chen (2009), and

Lai (2014)). The setup in Chen (2009) is the closest to ours; she assumes that the receiver

has a signal about the sender’s type, and shows that nonmonotone equilibria may arise. Our

model differs from Chen’s in that we focus on the optimal disclosure mechanism. In terms of

the receiver’s private information, our paper is related to signaling or disclosure games with

privately informed receivers (e.g., Feltovich, Harbaugh and To (2002), Angeletos, Hellwig

and Pavan (2006), and Quigley and Walther (2018)).

2 An example

Consider an e-commerce platform (Sender) promoting a product to a customer (Receiver),

who decides whether or not to buy the product. The customer’s payoff from buying depends
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on the product’s quality s, which is uniform on [0, 1]. The customer’s payoff if he buys is

s − 3/4. The platform’s payoff is one if the customer buys. If not, both players get a zero

payoff.

The platform designs a mechanism for disclosing information about s and can commit

to this mechanism (e.g., Rayo and Segal (2010)). Platforms typically provide information

to customers about their products, such as weight, material, dimensions, etc. They some-

times provide information about previous sales, customers’ reviews, return rates, etc. There

are other ways in which platforms provide information for the customers. Amazon labels

some products as “Amazon’s Choice.” Airbnb designates some hosts as “Superhosts.” In

some cases, the information provided by the platforms is verifiable, or the algorithms by

which platforms generate information are publicly known. In other cases, platforms do not

publish their algorithms. Recent research (Best and Quigley (2018) and Guo and Shmaya

(2018)) show that even when the algorithms are not published, platforms can essentially gain

commitment power in an equilibrium.

If the customer has no private information, it is well-known that the platform will reveal

whether s is above or below 1/2. The platform extracts the entire surplus, so that the

customer’s expected payoff from buying is zero.

The customer has some private information about the product’s quality, captured by his

type. Given s, the customer’s type is H with probability s and L with probability 1 − s.

Naturally, the higher the product’s quality, the more likely that the customer’s type is H .

Thus, type H is more optimistic about s and easier to persuade than type L is.

We show that the optimal disclosure takes the form shown in figure 1. The x-axis is the

product’s quality. The platform signals whether the quality is in the dark-gray or light-gray

regions. When the quality is in the dark-gray region (concentrated around 3/4), the product

is a solid one. When the quality is in one of the light-gray regions, the product can be either

good or bad. These regions are such that, given their private information, both types want

to buy if they learn that the quality is in the dark-gray region, but only type H wants to

buy if they learn that the quality is in one of the light-gray regions. Note that the platform

does not extract the entire surplus, since type H gets a positive payoff from buying when

the quality is in the dark-gray region.

Thus, the platform should “spend its capital” on products that provide customers with

a solid utility, and it should push for the buying decision. It should pool extreme products

which might provide either a higher or a lower utility. For these products, the customer then

decides based on his own information. In particular, this implies that the platform lets its

highest-utility products “sell themselves to the customer.” Our result supports the intuition
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Both types buy

Only H type buys

Figure 1: Optimal disclosure for binary types

that products which get the “Amazon’s Choice” or “Superhost” labels generate a solid utility

for customers, while the products which do not get these labels might still generate either a

higher utility (e.g., due to a bargain price) or a lower utility (e.g., due to low quality).

A central concept in our solution is the notion of nested intervals. Both types buy on

an interval of qualities: type L buys only in the dark-gray region and type H buys in both

the dark-gray and the light-gray regions. Type L’s buying interval is a subset of type H ’s.

Compared to type H ’s interval, type L does not buy when the quality is either quite good

or quite bad.

3 Environment and main results

Let S, the set of Sender’s types, be an interval on the real line equipped with Lebesgue

measure µ; let T , the set of Receiver’s types, be a subset of the real line equipped with a

σ-finite measure λ of full support. In all our examples, T is either a discrete space equipped

with the counting measure or an interval equipped with Lebesgue measure. Consider a

distribution over S × T with density f with respect to µ × λ. We also make the technical

assumption that the set T is closed and bounded from below, with the lowest type denoted

by t, and that the density function f(s, t) is continuous in t.

Let u : S → R be a bounded and nondecreasing function representing Receiver’s payoff

from accepting. Receiver’s payoff from rejecting is zero. We assume that Sender’s payoff

is one if Receiver accepts and is zero otherwise. We adopt this payoff structure in order

to simplify the exposition. In section 5.1, we extend our results by allowing Sender’s and

Receiver’s payoffs from accepting to depend on both Sender’s and Receiver’s types.

What we call “Sender’s type” is called “state” in most persuasion papers (e.g., Kamenica

and Gentzkow (2011)). In most papers, Receiver has no private information about Sender’s

type. However, in games with incomplete information, the term “state” refers to all the

uncertainty, so it means the pair of types in our setup. We follow the terminology of games
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with incomplete information.

We make the following assumption about the distribution of Sender’s and Receiver’s

types:

Assumption 1. [i.m.l.r.] The density function f is increasing in monotone likelihood-ratio

order : For every t′ < t, the ratio f(s, t)/f(s, t′) is weakly increasing in s.

Different types of Receiver have different beliefs about Sender’s type. Given assumption

1, the higher t is, the more optimistic Receiver is about the distribution over Sender’s types.

Example 1. We extend the platform example from section 2. Sender’s type space is S =

[0, 1]. Receiver’s payoff from accepting is u(s) = s − ζ , where ζ is a parameter. Receiver’s

type space is T = {L,H} with L < H . The density f(s, t) is given by

f(s,H) = 1/2 + φ(s− 1/2) and f(s, L) = 1/2− φ(s− 1/2), for 0 6 s 6 1.

The parameter φ ∈ [0, 1] captures the accuracy of Receiver’s private information. When φ

is zero, Receiver has no private information. As φ increases, Receiver’s type becomes more

informative about Sender’s type. �

Example 1 shows that, as in games with incomplete information, Sender’s type captures

two aspects of the game. First, it affects Receiver’s payoff from accepting. Second, it

determines Sender’s belief about Receiver’s type: when Sender’s type is s, Receiver’s type

is H with probability 1/2 + φ(s − 1/2) and L with probability 1/2 − φ(s − 1/2). Both

aspects have implications for designing the optimal mechanism. The first aspect appears

in all information design papers. The second aspect appears in setups, like ours, in which

Receiver has some private information about Sender’s type. Throughout the paper, when

we use “type” alone, we mean “Receiver’s type.”

3.1 Disclosure mechanisms

A disclosure mechanism is given by a triple (X , κ, r) where X is a set of signals, κ is a

Markov kernel from S to X ,3 and r : X × T → {0, 1} is a recommendation function. When

Sender’s type is s, the mechanism randomizes a signal x according to κ(s, ·) and recommends

that type t accept if and only if r(x, t) = 1.

There are many ways in which Sender can disclose information. To illustrate, we give

two examples of signaling structures (X , κ):

3That is, κ : S × B(X )→ [0, 1] such that κ(s, ·) is a probability measure over X for every s ∈ S, where
B(X ) is the sigma-algebra of Borel subsets of X .
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– Sender can reveal whether his type is above or below some threshold s ∈ S. The

signal space is X = {above, below}. For any s > s, κ(s, ·) = δabove. For any s < s,

κ(s, ·) = δbelow.

– Sender can randomize. Let X = {above, below, null} and let s ∈ S be some threshold.

For any s > s, κ(s, ·) = 1/2δabove + 1/2δnull. This means that, for any s > s, Sender

says “above” with probability 1/2 and “null” with probability 1/2. For any s < s,

κ(s, ·) = 1/2δbelow+1/2δnull. Under this mechanism, Sender sometimes reveals whether

his type is above or below s, and sometimes reveals nothing.

Once Receiver observes the signal x, the recommendation function r(x, ·) contains no further

information about Sender’s type. We could define a disclosure mechanism to be a signal-

ing structure (X , κ). However, we choose to include the recommendation function in our

definition of a disclosure mechanism, because it allows us to succinctly define the incentive-

compatibility constraints and Sender’s problem.

3.2 Incentive compatibility

Receiver observes the signal and decides whether to accept or not. Incentive compatibility

means that, after observing the signal, each type will follow the mechanism’s recommenda-

tion. We now proceed to formally define incentive compatibility.

A strategy for type t is given by σ : X → {0, 1}. Let σ∗

t = r(·, t) be the strategy

that follows the mechanism’s recommendation for type t. We say that the mechanism is

incentive-compatible (IC) if, for every type t,

σ∗

t ∈ argmax

∫

f(s, t)u(s)

(
∫

σ(x) κ(s, dx)

)

µ(ds), (1)

where the argmax ranges over all strategies σ. The expression inside the argmax is, up to

normalization, the expected payoff of type t under σ.

For an IC mechanism, the recommendation function r is almost determined by the sig-

naling structure (X , κ).4 Type t receives a recommendation to accept if his expected payoff

conditional on the signal is positive, and to reject if it is negative.

4We say “almost determined” because of the possible indifference and because the conditional expected
payoff is defined up to an event with zero probability. We omit the formal statement of this assertion, in
order not to get into the technical intricacies involving conditional distributions.
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3.3 Sender’s optimal mechanism

Sender’s problem is:

Maximize

∫∫

f(s, t)

(
∫

r(x, t) κ(s, dx)

)

µ(ds)λ(dt) (2)

among all IC mechanisms. We assume a common prior between Sender and Receiver, which

is reflected by the fact that the same density function f appears in (1) and (2).

If Receiver has no private information (i.e., if T is a singleton), then under the optimal

mechanism Sender reveals whether or not his type is above some s ∈ S, and recommends

accepting only when his type is above s. The threshold s is chosen such that Receiver’s

expected payoff from accepting is zero.

In this paper we solve for the optimal disclosure when Receiver’s type is correlated with

Sender’s type, so that Receiver has some private information about Sender’s type. As we

shall see, each type t still accepts on an interval of Sender’s types and the interval expands

as t increases. However, unlike the case of no private information, the acceptance intervals

are typically bounded from above. While the lowest type of Receiver gets a payoff of zero,

higher types receive some information rent. We formally define these properties of the

optimal mechanism here, and provide the proof in section 6.

We say that the mechanism is a cutoff mechanism if (i) the signal space is given by X =

T ∪{∞}, and (ii) r(x, t) = 1 if and only if t > x. Thus, a cutoff mechanism announces a cutoff

type x and recommends that type x and all higher types accept. If the mechanism announces

infinity to be the cutoff type, then it recommends that all types reject. A deterministic

cutoff mechanism is one in which κ(s, ·) is Dirac’s measure on z(s) for some function z :

S → T ∪ {∞}. Thus, when Sender uses a deterministic cutoff mechanism, he performs no

randomization and, when his type is s, he announces a cutoff type z(s).

Under a deterministic cutoff mechanism, the acceptance set of type t (i.e., the set of

Sender’s types for which type t accepts) is {s : t > z(s)}. By the definition of a cutoff

mechanism, whenever the mechanism recommends that type t accept, it also recommends

that any higher type accept. Therefore, for a deterministic cutoff mechanism, type t’s ac-

ceptance set is a subset of a higher type’s acceptance set. Lastly, we say that the mechanism

recommends accepting on intervals if the acceptance sets of all Receiver’s types are intervals.

Figure 2 illustrates two deterministic cutoff mechanisms for our platform example. The y-

axis is the signal space X = {L,H}∪{∞}. In both mechanisms, the solid line illustrates the

cutoff function z(s). The dashed line illustrates type H ’s acceptance set, and the dotted line

gives type L’s acceptance set. The mechanism on the right-hand side recommends accepting
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on intervals, since both types’ acceptance sets are intervals. On the left-hand side, neither

type accepts on an interval.

s
0 1

T ∪∞

∞

H

L

s
0 1

T ∪∞

∞

H

L

Figure 2: Examples of deterministic cutoff mechanisms

The following theorem is our main result. It states that Sender’s optimal mechanism is

a deterministic cutoff mechanism that recommends accepting on intervals, and formulates

Sender’s problem in terms of the endpoints of each type t’s acceptance interval.

Theorem 3.1. Under assumption 1, the optimal IC mechanism is a deterministic cutoff

mechanism that recommends accepting on intervals. The acceptance intervals [π(t), π(t)] are

the solution to the following optimization problem:

Maximize

∫

W (π(t), π(t), t) λ(dt)

subject to U (π(t), π(t), t) > U (π(t′), π(t′), t) for all t′ 6 t,

U (π(t), π(t), t) > 0,

(3)

over all functions π, π : T → R such that π is monotone-decreasing, π is monotone-

increasing, and π (t) 6 π (t). The functions W,U : R3 → R are given by

W
(

q, q, t
)

=

∫ q

q

f(s, t) µ(ds), and U
(

q, q, t
)

=

∫ q

q

u(s)f(s, t) µ(ds).

It is a standard argument that under assumption 1 every IC mechanism is essentially a

cutoff mechanism. This is because we can replace each signal with the lowest Receiver’s type

that is still willing to accept given that signal. Due to the i.m.l.r. assumption, all higher

types are willing to accept.5 The contribution of theorem 3.1 is that the optimal mechanism

has the additional property that every type accepts on an interval. Moreover, when choosing

5We do not formalize and prove this assertion because we do not need it. We say “essentially” because
of the possible indifference and some intricacies of zero-probability events.

12



the endpoints of each type’s interval, Sender needs to ensure only that each type’s payoff

from accepting on his interval is weakly higher than that from accepting on a lower type’s

interval, and that the lowest type’s payoff from accepting is weakly positive.

The i.m.l.r. assumption is essential for theorem 3.1. The fact that the optimal mechanism

does not randomize follows from the assumption that Sender’s type space is nonatomic. We

show in online appendix 7.1 how to relax this assumption. The assumption that f(s, t) is

continuous in t is not essential. Without it, we only need to modify the definition of a cutoff

mechanism: in addition to announcing the cutoff type, the mechanism needs to announce

whether the cutoff type is supposed to accept or reject.

We now explain Sender’s problem in (3) by relating it to the monopoly screening problem,

as in Mussa and Rosen (1978). For ease of exposition, we assume that Sender’s type space

S is the real line and that u(0) = 0. We refer to s > 0 as “positive types” and s < 0 as

“negative types,” so that Receiver gains a positive payoff from accepting on positive types

and a negative payoff from accepting on negative types.

From theorem 3.1 we know that under the optimal mechanism each type t accepts on an

interval of Sender’s types. When type t accepts on the interval
[

q, q
]

with q < 0 < q, his

(normalized) payoff is given by:

U
(

q, q, t
)

= U (q, t) + U
(

q, t
)

.

Here U (q, t) =
∫ q

0
u(s)f(s, t) µ(ds) and U

(

q, t
)

=
∫ 0

q
u(s)f(s, t) µ(ds) are, respectively, the

payoff from accepting on (0, q] and the payoff from accepting on
[

q, 0
)

.

Consider now the following monopoly screening problem. A seller offers a divisible good

and is uncertain about the type of the buyer. A type t buyer gets payoff U(q, t) from

consuming a good of quantity q and gets negative payoff U
(

q, t
)

from paying price −q. This

is a standard screening problem, except that the negative payoff U
(

q, t
)

from paying −q is

usually assumed to be q.

A mechanism for the monopoly screening problem is one that offers the buyer of type t

the quantity π(t) and charges the price −π(t). The constraints of Sender’s problem given

in (3) are the familiar “downward” IC constraints of the screening problem, namely, that no

type t would mimic a lower type t′ in the screening problem.

We emphasize that, while the connection between Sender’s problem and the monopoly

screening problem is intuitive, it relies on two assertions in theorem 3.1. First, the theorem

asserts that the optimal disclosure mechanism recommends that each type accept on an

interval, which allows us to interpret the endpoints of the intervals as quantity and price.

Second, the theorem asserts that the IC constraints of the monopoly screening problem are
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sufficient for Sender’s problem, even though in our environment Receiver has many deviation

strategies other than just following the mechanism’s recommendation for some lower type:

Given a cutoff mechanism, each type t can choose an arbitrary set of announced cutoff types,

after which type t accepts.

4 The binary-type case

In this section, we fully characterize the optimal mechanism for the binary-type case. The

analysis for any finite-type space is similar. Our goal is threefold. First, we show how theo-

rem 3.1 reduces Sender’s problem to a finite-dimensional constrained-optimization problem.

Second, we provide the necessary and sufficient condition for pooling to be optimal. Third,

we explain why, even in the binary-type case of example 1, a solution to Sender’s problem

could not be derived by the arguments provided in previous papers.

Let T = {L,H} and S = [0, 1]. Receiver’s payoff u is strictly monotone-increasing, and

u(ζ) = 0 for some fixed ζ ∈ [0, 1]. Assumption 1 means that f(s,H)
f(s,L)

is monotone-increasing

in s. Sender’s problem is trivial if type L accepts without further information, so we assume

otherwise.

Theorem 3.1 shows that the optimal mechanism takes the form of nested intervals: type

L accepts when s ∈ [π(L), π(L)] and type H accepts when s ∈ [π(H), π(H)]. The endpoints

are the solution to the following problem, in which we have one incentive constraint for each

type:

Maximize
π(H),π(L),π(L),π(H)

∫ π(L)

π(L)

f(s, L) µ(ds) +

∫ π(H)

π(H)

f(s,H) µ(ds)

subject to 0 6 π(H) 6 π(L) 6 π(L) 6 π(H) 6 1,
∫ π(L)

π(H)

u(s)f(s,H) µ(ds) +

∫ π(H)

π(L)

u(s)f(s,H) µ(ds) > 0,

∫ π(L)

π(L)

u(s)f(s, L) µ(ds) > 0.

(4)

The structure of the problem allows us to further reduce the number of variables to one.

First, the constraint π(H) 6 1 is binding; otherwise, increasing π(H) would increase Sender’s

payoff without violating the constraints. Second, type H ’s constraint is binding; otherwise,

increasing π(L) would increase Sender’s payoff without violating the constraints. Lastly, type

L’s constraint is binding; if not, decreasing π(L) would benefit Sender while still satisfying

the constraints. We are left with one variable and can derive the condition under which
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Sender pools the two types.

Proposition 4.1. Pooling is optimal if and only if

f(1, H)

f(1, L)
−

f (π∗(L), H)

f (π∗(L), L)
< 1−

u (π∗(L))

u(1)
, (5)

where π∗(L) is such that type L is indifferent between accepting on [π∗(L), 1] and rejecting,

i.e.,
∫ 1

π∗(L)
u(s)f(s, L) µ(ds) = 0. If (5) holds, then the mechanism recommends that both

types accept on [π∗(L), 1].

Condition (5) states that Sender does not benefit if he marginally shrinks type L’s interval

in order to expand type H ’s interval. More explicitly, starting from the pooling interval

[π∗(L), 1], Sender can replace type L’s interval with

[

π∗(L) +
f(1, L)

f (π∗(L), L)

u(1)

−u (π∗(L))
ε, 1− ε

]

for small ε > 0,

without violating type L’s incentive constraint. Due to the i.m.l.r. assumption, this change

allows Sender to lower π(H), so that type H accepts more often. Condition (5) states

that Sender will not benefit from this operation. Therefore, this condition is necessary for

pooling to be optimal. We show that this condition is also sufficient. This follows from the

fact that the condition is the first-order optimality condition in the constrained-optimization

problem (4). Intuitively, the gain from type H when we marginally shrink type L’s interval

is the greatest when we start from the pooling interval [π∗(L), 1]. If this gain is less than the

loss from type L, then pooling is optimal.

Returning to example 1, corollary 4.1 states that separating is strictly optimal when the

accuracy of Receiver’s signal is sufficiently high.

Corollary 4.1. In example 1, there exists an increasing function Φ(·) such that the optimal

mechanism is separating if φ > Φ(ζ), and pooling if φ < Φ(ζ).

Finally, we compare our approach with the concavification (cav-V) approach, following

Aumann and Maschler (1995) and Kamenica and Gentzkow (2011, section VI A). Let V :

∆(S) → R be Sender’s payoff when the distribution over S induced by his signal is γ. The

cav-V approach states that Sender’s optimal payoff is given by cavV (γ0), where cavV is the

concave envelope of V and γ0 is the prior over S.

Calculating the concave envelope over the (infinite-dimensional) space of distributions

is typically difficult, and most papers that derive an explicit solution to Sender’s problem

require V to be a function of the posterior expectation
∫

s γ(ds) alone (see Gentzkow and
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Kamenica (2016), Dworczak and Martini (2018), and KMZL). Our example 1 is beyond the

scope of these papers. Even though Receiver’s optimal action in this example depends only

on his posterior expectation of Sender’s type given his own type and Sender’s signal, Sender’s

payoff V (γ) from a posterior distribution γ is not a function of the posterior expectation
∫

s γ(ds) alone. Indeed, assume for convenience that φ = 1, so f(s,H) = s, and f(s, L) =

1− s. Then, Sender’s payoff from the distribution γ induced by his signal is given by:

V (γ) =



















1, if
∫

(s− ζ)(1− s) γ(ds) > 0;

0, if
∫

(s− ζ)s γ(ds) < 0;
∫

s γ(ds), otherwise,

where the three regions that define V correspond, respectively, to the distributions under

which both types accept, the distributions under which neither type accepts, and the distri-

butions under which only type H accepts.

5 Discussion

In this section we explain how our results extend to cases in which Sender’s and Receiver’s

payoffs depend on both s and t, and there is no common prior. Our goal is not the extension

per se, but to use the more general setup in order to compare our results to those in Kolotilin

(2018) and KMZL. For simplicity, in this section we use examples in which Sender’s type

space is atomic. Section 7.1 in the online appendix explains how the definition of the interval

structure and our results extend to an atomic type space for Sender.

5.1 More general setups

We make the following modifications to our model. We use u(s, t) and v(s, t) to denote

Receiver’s and Sender’s payoffs, respectively, from accepting. We allow heterogeneous beliefs.

We continue to denote Receiver’s belief by f(s, t), but now denote Sender’s belief by g(s, t).

We assume that v(s, t), g(s, t) > 0 for every s, t.

Extending the definitions of incentive compatibility and Sender’s problem to this envi-

ronment is straightforward. Our proof of theorem 3.1 can be modified to show that the

assertion in the theorem holds under the following assumptions 2 and 3, which replace the

monotonicity of Receiver’s payoff function and the i.m.l.r. assumption (assumption 1), re-

spectively.
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Assumption 2. For every t ∈ T , the ratio f(s,t)u(s,t)
g(s,t)v(s,t)

increases in s.

Assumption 2 connects the beliefs and payoffs of Receiver and Sender. Without it, the

optimal mechanism does not recommend accepting on intervals even when T is a singleton

(i.e., even when Receiver has no private information). Example 4 in online appendix 7 shows

that theorem 3.1 may not hold when assumption 2 fails.

Assumption 3. There exists some s0 ∈ S such that u(s, t) > 0 for s > s0, and u(s, t) 6 0 for

s 6 s0. Moreover, for every t′, t ∈ T such that t′ < t, the ratio f(s,t)u(s,t)
f(s,t′)u(s,t′)

weakly increases

in s.

Assumption 3 captures the idea that Receiver’s types are ranked. It implies the more

general ranking assumption in Kolotilin (2018). For the sake of comparison with Kolotilin

(2018) and later with KMZL, we repeat this assumption:

Assumption 4. For every t′, t ∈ T such that t′ < t, and every probability measure Q over S,

if
∫

f(s, t′)u(s, t′) Q(ds) > (>)0, then
∫

f(s, t)u(s, t) Q(ds) > (>)0.

Except for some minor technical detail, this is assumption 1 in Kolotilin (2018). It says

that given any Sender’s signal, if type t′ is willing to accept, then a higher type t is also

willing to accept. Assumption 4 is satisfied, for example, when the density f(s, t) satisfies

the i.m.l.r. assumption and Receiver has the additive payoff function given by u(s, t) = s− t.

In KMZL, the optimal IC mechanism does not always recommend accepting on intervals.

This shows that in theorem 3.1, assumption 3 cannot be replaced by assumption 4.

5.2 Private incentive compatibility

Up to now we have assumed that the information disclosed to all Receiver’s types is the

same. We now consider a different environment in which Receiver first reports his type and

Sender can disclose different information to different types. Our definition of a disclosure

mechanism is amenable to this environment: each Receiver’s type can report any type t′ ∈ T ;

instead of observing the signal x, he observes the recommendation r(x, t′) for the reported

type.

This environment restricts the set of possible deviation strategies and gives rise to a

weaker notion of incentive compatibility, which we call “private incentive compatibility.”

Formally, a mechanism is privately incentive-compatible (or privately IC) if (1) holds for

every type t where the argmax ranges over all strategies σ of the form σ(x) = σ̄(r(x, t′)) for

some type t′ ∈ T and some σ̄ : {0, 1} → {0, 1}.

Note that we use the same definition of a disclosure mechanism for the environment in

which Sender discloses the same information to all types, and the environment in which
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Sender discloses different information to different types. We make the distinction between

the two environments at the level of incentive compatibility. This approach makes straight-

forward the logical implication between incentive compatibility and private incentive com-

patibility.

It is easy to see that every mechanism that is IC is also privately IC. The following

example shows that the converse is not true.

Example 2. Let S = {−1000, 1, 10} and T = {L,H}. Receiver’s payoff from accepting is

given by u(s, t) = s. The density f(s, t) = g(s, t) is given by:

−1000 1 10

H 5/22 5/22 1/22

L 20/82 20/82 1/82

Consider a mechanism which recommends that H accept if s is 10 and reject otherwise, and

that L accept if s is 1 and reject otherwise. This mechanism is privately IC, but is not IC

because if Sender announces the recommendation to both types, then Receiver will want to

accept whenever it is recommended that some type should accept. �

The mechanism in example 2 is, of course, not optimal. The following corollary shows

that Sender does no better under privately IC mechanisms than under IC mechanisms.

Corollary 5.1. Under assumptions 2 and 3, no privately IC mechanism gives a higher payoff

to Sender than the optimal IC mechanism.

It is interesting to compare this result with a result of KMZL. In their setup, Receiver’s

and Sender’s types are independent and Receiver’s payoff is given by u(s, t) = s − t. They

show that, given the independence and the additive-payoff structure, any payoffs that are

implementable by a privately IC mechanism are implementable by an IC one. This is not

true in our setup: not every privately IC mechanism in our setup can be duplicated by an

IC one. Indeed, under the privately IC mechanism in example 2, type H accepts with the

interim probability 1/11 and type L accepts with the interim probability 20/41, but there

exists no IC mechanism with these interim acceptance probabilities.

To understand the connection between corollary 5.1 and the equivalence result of KMZL,

it is useful to start with the more general ranking assumption 4. With this assumption we

have the following proposition:

Proposition 5.1. Under assumption 4, every privately IC cutoff mechanism is IC.
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In both our setup and that of KMZL, Receiver’s types are ranked in the sense of as-

sumption 4. In the type-independence and additive-payoff environment of KMZL, every

privately IC mechanism can be transformed into an equivalent cutoff mechanism. Therefore,

from proposition 5.1 every privately IC mechanism can be transformed to an equivalent IC

mechanism. In our setup, the main argument of our proof (lemma 6.2) shows how to cre-

ate a cutoff mechanism from a privately IC mechanism. But this cutoff mechanism weakly

increases the probability with which each Receiver’s type accepts, so it is not necessarily

equivalent to that privately IC mechanism.

Example 3 in online appendix 7 shows that the result that the optimal privately IC

mechanism is also IC does not extend to an environment in which f(s, t) satisfies the i.m.l.r.

assumption and Receiver’s payoff is additive. This example satisfies assumptions 2 and 4,

but not assumption 3.

6 Proofs

6.1 Proof of theorem 3.1 and corollary 5.1

We assume without loss of generality that u(s) > 0 for s > 0, and u(s) 6 0 for s 6 0.

For a mechanism (X , κ, r), if type t follows the recommendation, then type t’s acceptance

probability in s is given by

ρ(s, t) =

∫

r(x, t) κ(s, dx). (6)

Let χ(t, t′) be the payoff for type t if he follows the mechanism’s recommendation for t′:

χ(t, t′) =

∫∫

f(s, t)u(s)ρ(s, t′)µ(ds) λ(dt).

The mechanism is downward incentive-compatible (or downward IC) if and only if (i) every

t prefers to follow the recommendation for his type than to follow the recommendation for

any lower type; and (ii) the lowest type t prefers to follow the recommendation for his type

over always rejecting; expressed formally, we have:

χ(t, t) > χ(t, t′), for every t′ 6 t ∈ T , and (7)

χ(t, t) > 0. (8)

Since downward incentive compatibility depends on the mechanism only through the accep-

tance probability given by ρ, we sometimes refer to ρ as a mechanism and say that ρ is
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downward IC if (7) and (8) hold.

Let ν(t) be the normalized probability that type t accepts:

ν(t) =

∫

f(s, t)ρ(s, t)µ(ds).

We say that a mechanism weakly dominates another mechanism if for every t the former

has a weakly higher ν(t). We say that a mechanism dominates another mechanism if (i) the

former weakly dominates the latter, and (ii) for some t the former has a strictly higher ν(t).

Lastly, we say that a cutoff function z : S → T ∪{∞} is U-shaped if there exists some ŝ such

that z is monotone-decreasing for s 6 ŝ, and monotone-increasing for s > ŝ. A deterministic

cutoff mechanism has a U-shaped cutoff function if and only if it recommends accepting on

intervals. We also call such a mechanism a U-shaped cutoff mechanism.

Theorem 3.1 is the immediate consequence of the following theorem:

Theorem 6.1. The optimal downward IC mechanism is a deterministic cutoff mechanism

that recommends accepting on intervals. The cutoff function z(s) is increasing on the set

{s : s > 0} and decreasing on the set {s : s 6 0}. This optimal mechanism is IC.

The proof of theorem 6.1 will use lemmas 6.2 and 6.3. Lemma 6.2 establishes the fact

that when one searches for the optimal downward IC mechanism, it is sufficient to search

among U-shaped cutoff mechanisms that are downward IC. Lemma 6.3 asserts that, for any

cutoff mechanism that is downward IC, if we publicly declare the cutoff type to be x, then

all types which are supposed to accept (i.e., types t such that t > x) will still accept. (It is

possible that lower types will also accept.)

Using lemmas 6.2 and 6.3, we prove theorem 6.1 in three steps. First, among all U-shaped

cutoff mechanisms that are downward IC, there exists one z∗ that is optimal to Sender.

Second, this mechanism z∗ is not dominated by any other U-shaped cutoff mechanism that

is also downward IC. Third, z∗ is IC.

For the case in which the type space T is finite, the first and second steps of the proof

are immediate since the space of U-shaped cutoff mechanisms is finite-dimensional; this

is because every U-shaped cutoff mechanism is given by the endpoints of the acceptance

intervals. For the case in which T is a continuous-type space, we need to be more careful

in establishing the existence of Sender’s optimal mechanism and in showing that it is not

dominated, because of the possible problem with sets of types of measure zero. Aside from

these nuisances, the core of the proof is in the third step. This step uses lemmas 6.2 and 6.3.

Proof of theorem 6.1. Consider the space Z of all U-shaped functions z : S → T ∪ {∞}
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with minimum at 0. This space, viewed as a subspace of L∞(S → T ∪ {∞}) equipped with

the weak star topology, is compact. The set of such functions z ∈ Z which give rise to

downward IC mechanisms is a closed subset of Z. We denote this subset by Ẑ. Sender’s

payoff
∫∫

z(s)6t
f(s, t)µ(ds) λ(dt) is an upper semicontinuous function of z. Therefore, there

exists a z∗ ∈ Ẑ which maximizes Sender’s payoff.

For each z ∈ Ẑ, the normalized probability that type t accepts νz(t) =
∫

t>z(s)
f(s, t)µ(ds)

is a right-continuous function of t, which follows from the continuity assumption on f .

Because νz is right-continuous and λ has full support, the maximum z∗ cannot be dominated

by any z ∈ Ẑ , i.e., if νz(t) > νz∗(t) for every t, then νz = νz∗ .

By lemma 6.2 the cutoff mechanism induced by z∗ is optimal for Sender among all

downward IC mechanisms. We must still show that z∗ is IC. By lemma 6.3 the acceptance

set of each type t under the IC mechanism induced by z∗ is at least the event {s : z∗(s) 6 t}.

Therefore, if the cutoff mechanism z∗ were not IC, then it would be dominated by an IC

mechanism. By lemma 6.2 again, this IC mechanism is itself weakly dominated by a U-

shaped cutoff mechanism given by some z ∈ Ẑ, which contradicts the fact that z∗ is not

dominated by any z ∈ Ẑ.

Lemma 6.2. For every downward IC mechanism there exists a deterministic cutoff mecha-

nism such that it recommends accepting on intervals, is downward IC, and weakly dominates

the original mechanism. The cutoff function z(s) is increasing on the set {s : s > 0} and

decreasing on the set {s : s 6 0}.

The proof of lemma 6.2 has two steps. We begin with an arbitrary downward IC mech-

anism. In the first step we concentrate the acceptance probabilities of each type t to an

interval
[

p(t), p(t)
]

around 0, in such a way that the positive (or negative) payoff that each

type gets from positive (or negative) Sender’s types is the same as in the original mecha-

nism. This step preserves the downward IC conditions and weakly increases the acceptance

probability of each type.

In the second step we make the mechanism a cutoff mechanism by essentially letting

each type accept at the union of his interval and all intervals of lower types. This creates

the new acceptance intervals [π(t), π(t)], which are nested in the sense that π is monotone-

decreasing and π is monotone-increasing. If T is finite, then we can now define a cutoff

function z(s) = min{t : s ∈ [π(t), π(t)]} that induces these acceptance intervals, i.e., such

that

z(s) 6 t←→ π(t) 6 s 6 π(t). (9)

The case of a continuous-type space has an additional complication, because in order to
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obtain a cutoff function z such that (9) holds, we need an additional continuity assumption

on π(t), π(t).6 This additional complication is due to our insistence that the cutoff type

will accept. A more general definition, which allows the mechanism to recommend that the

cutoff type either accept or reject, would have spared us some technical difficulties in the

proof, but we chose to make the definitions simpler.

Proof of lemma 6.2. For every type t, let p(t) and p(t) be such that p(t) 6 0 6 p(t), and

∫

∞

0

f(s, t)u(s)ρ(s, t)µ(ds) =

∫ p(t)

0

f(s, t)u(s)µ(ds), and

∫ 0

−∞

f(s, t)u(s)ρ(s, t)µ(ds) =

∫ 0

p(t)

f(s, t)u(s)µ(ds).

(10)

From (10) and the i.m.l.r. assumption, it follows that, for t′ < t:

∫

∞

0

f(s, t)u(s)ρ(s, t′)µ(ds) >

∫ p(t′)

0

f(s, t)u(s)µ(ds), and

∫ 0

−∞

f(s, t)u(s)ρ(s, t′)µ(ds) >

∫ 0

p(t′)

f(s, t)u(s)µ(ds).

(11)

From (10), (11), and (7), it follows that:

∫

f(s, t)u(s)
(

1[p(t),p(t)] − 1[p(t′),p(t′)]

)

µ(ds) > 0 (12)

for every t′ < t.

In addition, for every type t the monotonicity of u(s) in s and the fact that 0 6 ρ(s, t) 6 1

together imply that:

∫

∞

−∞

f(s, t)ρ(s, t)µ(ds) 6

∫ p(t)

p(t)

f(s, t)µ(ds) (13)

by the Neyman-Pearson lemma.

Thus, the mechanism with acceptance intervals
[

p(t), p(t)
]

is downward IC and weakly

dominates the original mechanism, as expressed in (12) and (13), respectively. Note, however,

that this is not yet a cutoff mechanism.

We now introduce nested acceptance intervals [π(t), π(t)] which are downward IC and

6For example, if [π(t), π(t)] =

{

[−2, 2], if t > 1

[−1, 1] if t 6 1
, then no such z exists.
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which will give rise to a cutoff mechanism. Let π(t) = infε>0 sup {p(t
′) : t′ < t+ ε} and π(t) =

infε>0 inf
{

p(t′) : t′ < t+ ε
}

be the right-continuous, monotone functions that dominate p and

p, respectively, and let z be given by (9):

z(s) 6 t←→ π(t) 6 s 6 π(t).

It is easy to see that the cutoff mechanism given by z with acceptance intervals [π(t), π(t)]

weakly dominates the mechanism with acceptance intervals
[

p(t), p(t)
]

. We claim that the

former mechanism is downward IC.

Let t′ < t. We first need to show that for the mechanism (π, π), type t prefers to accept

on his interval [π(t), π(t)] over accepting on t′’s interval [π(t′), π(t′)], i.e., that

∫

f(s, t)u(s)
(

1[π(t),π(t)] − 1[π(t′),π(t′)]

)

µ(ds) > 0. (14)

Let tk, t
′

k be such that

lim
k→∞

tk = t∞ 6 t and p(tk) ↑ π(t), and

lim
k→∞

t′k = t′
∞

6 t′ and p(t′k) ↑ π(t
′).

If t∞ 6 t′, then π(t′) = π(t); and from (9) it follows that {t′ 6 z(s) < t} ⊆ {s > 0}, so (14)

holds. Therefore, we can assume that t′ < t∞ and therefore, t′k < tk for every k.

From the definition of π, the continuity assumption on f , and the fact that limk→∞ tk =

t∞, it follows that lim supk→∞
p(tk) 6 π(t∞) and limk→∞ f(s, tk) = f(s, t∞). In addition, we

know that lim supk→∞
p(t′k) = π(t′). From these properties and Fatou’s Lemma, it follows

that:

lim sup
k→∞

∫ p(tk)

p(t′
k
)

f(s, tk)u(s)µ(ds) 6

∫ π(t∞)

π(t′)

f(s, t∞)u(s)µ(ds).

A similar argument shows that lim supk→∞
p(t′k) > π(t′) and lim supk→∞

p(tk) = π(t). When

this result is combined with the condition that u(s) 6 0 for any s 6 0, it follows that

lim sup
k→∞

∫ p(t′
k
)

p(tk)

f(s, tk)u(s)µ(ds) 6

∫ π(t′)

π(t∞)

f(s, t∞)u(s)µ(ds).
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Therefore, it follows that:

∫

f(s, t∞)u(s)
(

1[π(t),π(t)] − 1[π(t′),π(t′)]

)

µ(ds)

>

∫ π(t′)

π(t∞)

f(s, t∞)u(s)µ(ds) +

∫ π(t∞)

π(t′)

f(s, t∞)u(s)µ(ds)

> lim sup
k→∞

(

∫ p(tk)

p(t′
k
)

f(s, tk)u(s)µ(ds) +

∫ p(t′
k
)

p(tk)

f(s, tk)u(s)µ(ds)

)

> 0.

Given the i.m.l.r. assumption,
∫

f(s, t)u(s)
(

1[π(t),π(t)] − 1π(t′),π(t′)]

)

µ(ds) must be positive as

well since t > t∞. This proves (14).

Finally, we need to show that the lowest type gets a payoff of at least zero from obeying

under the mechanism (π, π). In the case of a discrete-type space, this follows from the

corresponding property of the original mechanism since in this case π(t) = p(t) and π(t) =

p(t). In the general case we need to appeal to an argument that is similar to the one with

which we proved the downward IC conditions and that uses converging sequences of types.

We omit this argument here.

Lemma 6.3. Assume assumption 4. For every cutoff mechanism κ that is downward IC, the

IC mechanism induced by this mechanism has the property that type t accepts when t > x,

where x is the announced cutoff type.

Proof of lemma 6.3. Assumption 4 implies that, for every cutoff mechanism, if t′′ 6 t′ 6 t

are types such that type t′ prefers following the recommendation for his type to following the

recommendation for t′′, then type t prefers following the recommendation for t′ to following

the recommendation for t′′:

χ(t′, t′) > χ(t′, t′′)→ χ(t, t′) > χ(t, t′′), for every t′′ 6 t′ 6 t. (15)

Fix a type t. We need to show that in the induced IC mechanism, type t accepts on the

event {x ∈ B} for every Borel subset B ⊆ [t, t], where x is the public signal announced by

the mechanism. That is, we need to show that

∫

f(s, t)u(s)κ(s, B)µ(ds) > 0.

It is sufficient to prove the assertion for sets B of the form B = {x : t′′ < x 6 t′} for some

t 6 t′′ < t′ 6 t and for the set B = {t}, since these sets generate the Borel sets. Indeed, for
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B = {x : t′′ < x 6 t′}, the following holds:

∫

f(s, t)u(s)κ(s, B)µ(ds) = χ(t, t′)− χ(t, t′′) > 0,

where the inequality follows from downward incentive-compatibility when t = t′, and from

(15), which extends to t > t′. The case B = {t} follows by a similar argument from (8).

Theorems 3.1 and 6.1 hold under assumptions 2 and 3. The proof is similar and hence

omitted.

Proof of corollary 5.1. Downward incentive-compatibility is a weaker notion than private

incentive-compatibility in the sense that every mechanism that is privately IC is also down-

ward IC. This corollary follows directly from theorem 6.1. Because the optimal downward

IC mechanism is IC, it is also the optimal privately IC mechanism.

6.2 Proof of proposition 5.1

Assumption 4 implies that, for every cutoff mechanism, if t 6 t′′ < t′ are types such that

type t prefers following the recommendation for t′ to following the recommendation for t′′,

then type t′′ prefers following the recommendation for t′ to following the recommendation

for t′′:

χ(t, t′) > χ(t, t′′)→ χ(t′′, t′) > χ(t′′, t′′), for every t 6 t′′ < t′. (16)

Based on lemma 6.3, we have shown that in the induced IC mechanism type t accepts when

t > x. We need to also show that type t rejects on the event {x ∈ B} for every Borel subset

B ⊆ (t,∞], where x is the public signal announced by the mechanism. That is, we need to

show that
∫

f(s, t)u(s, t)κ(s, B)µ(ds) 6 0.

It is sufficient to prove the assertion for sets B of the form B = {x : t′′ < x 6 t′} for some

t 6 t′′ < t′ since these sets generate the Borel sets. Indeed, for B = {x : t′′ < x 6 t′}, the

following holds:

∫

f(s, t)u(s, t)κ(s, B)µ(ds) = χ(t, t′)− χ(t, t′′) 6 0,

where the inequality follows from private incentive-compatibility when t = t′′ (type t′′ will

not mimic type t′), and from (16), which extends to t′′ > t.
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6.3 Proof of proposition 4.1

We first note that, under our assumption that type L rejects without additional information,

both IC constraints in (4) bind. Indeed, for type H this holds trivially in the pooling case;

in the separating case, if the constraint is not binding, then slightly increasing π(L) would

increase Sender’s payoff without violating either type’s IC constraint. For type L, we know

from theorem 3.1 that u(π(L)) 6 0. If the IC constraint for type L is not binding, then

making π(L) slightly smaller will increase Sender’s payoff without violating either type’s IC

constraint.

Since both IC constraints are binding and since π(H) = 1, the variables in Sender’s

problem (4) are determined by a single variable. If π(L) = y for some ζ 6 y 6 1, then (i)

π(L) = ℓL(y) where ℓL : [ζ, 1]→ [0, ζ ] is given by

∫ y

ℓL(y)

u(s)f(s, L) µ(ds) = 0;

and (ii) π(H) = ℓH(y) where ℓH : [ζ, 1]→ [0, ζ ] is given by

∫ ℓL(y)

ℓH (y)

+

∫ 1

y

u(s)f(s,H) µ(ds) = 0.

By the implicit function theorem, ℓL and ℓH are differentiable and their respective derivatives

are given by:

ℓ′L(y) =
u(y)

u(ℓL(y))

f(y, L)

f(ℓL(y), L)
, ℓ′H(y) =

u(y)

−u(ℓH(y))

f(y,H)f(ℓL(y), L)− f(y, L)f(ℓL(y), H)

f(ℓH(y), H)f(ℓL(y), L)
.

It is easy to see that ℓL is monotone-decreasing and that the i.m.l.r. assumption implies that

ℓH is monotone-increasing. In terms of the variable y, Sender’s payoff is given by

R(y) =

∫ y

ℓL(y)

f(s, L) µ(ds) +

∫ 1

ℓH(y)

f(s,H) µ(ds).

Thus, Sender’s payoff is differentiable. After we substitute ℓ′L(y) and ℓ′H(y) into R′(y), it

follows that R′(y) is positive if and only if:

f(y,H)

f(y, L)
−

f(ℓL(y), H)

f(ℓL(y), L)
< −u(ℓH(y))

(

1

u(y)
−

1

u(ℓL(y))

)

.

Since ℓ′L(y) 6 0 6 ℓ′H(y), the left-hand side increases in y due to the i.m.l.r. assumption and
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the right-hand side decreases in y since u(s) increases in s. Therefore, R′(y) is positive if

and only if y is small enough. Therefore, pooling is optimal if and only if Sender’s payoff

achieves maximum at y = 1, which is equivalent to R′(1) > 0. That is, the inequality above

holds when y equals 1.

6.4 Proof of Corollary 4.1

Proof of Corollary 4.1. Substituting f(s,H), f(s, L), and u(s) into condition (5) in proposi-

tion 4.1, we find that this condition holds if and only if

ζ >
3φ3 + 13φ2 − (φ− 1)2

√

9φ2 − 6φ+ 33 + 21φ− 5

8φ(3φ+ 1)
,

and the right-hand side is monotone-increasing in φ, as desired.

7 Online appendix

7.1 An atomic type space for Sender

In this section we describe the changes that are needed to extend theorem 3.1 to the case

in which Sender’s type space S ⊂ R has a supporting measure µ that might include atoms.

The main motivation is the atomic case in which S is a finite set with µ being the counting

measure. Our definitions of a disclosure mechanism, incentive compatibility, and Sender’s

problem carry through to this framework. The main difference from the nonatomic case is

that the optimal mechanism might not be deterministic. Therefore, we need to modify the

definition of “accepting on intervals.”

For a mechanism (X , κ, r), if type t follows the recommendation, then type t’s acceptance

probability given s is given by

ρ(s, t) =

∫

r(x, t) κ(s, dx).

We say that the mechanism recommends accepting on intervals if, for every type t, there

exist some s 6 s ∈ S such that ρ(s, t) = 1 whenever s ∈ (s, s), and ρ(s, t) = 0 whenever

s /∈ [s, s]. The acceptance probabilities at the endpoints s and s might be strictly between 0

and 1.

With these definitions we modify theorem 3.1 as follows: under assumption 1, the optimal

IC mechanism is a cutoff mechanism that recommends accepting on intervals.
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This holds because, by Skorokhod’s representation theorem, every S can be transformed

to an interval equipped with Lebesgue measure. For example, if S = {s−, s+} with a uniform

prior, then one can think of Sender’s type as a function of some s ∈ [−1, 1] drawn from a

uniform distribution. Sender’s type is s− if s ∈ [−1, 0], and s+ if s ∈ (0, 1]. Conversely, we

can create s ∈ [−1, 1] by randomizing from a uniform distribution on [−1, 0] or (0, 1] when

Sender’s type is s− or s+, respectively. This leads to a correspondence between mechanisms

defined on S = {s−, s+} and those defined on S = [−1, 1]. This correspondence preserves

the IC properties and Sender’s payoff (although it may transform a deterministic mechanism

into a nondeterministic mechanism).

7.2 Counterexamples

The following example shows that without assumption 3, corollary 5.1 may not hold. This

example satisfies assumptions 2 and 4, but not assumption 3.

Example 3. Let S = {−4, 3, 4} and T = {H,M,L}. The density f(s, t) = g(s, t) is given

by table 1, which satisfies the i.m.l.r. assumption. When Sender’s type is s, type H ’s payoff

from accepting is s, type M ’s payoff from accepting is s − 2, and type L’s payoff from

accepting is s− 4. Sender’s payoff from accepting is one.

t
s
−4 3 4

H 1/25 6/25 10/25
M 1/25 2/25 2/25
L 1/25 1/25 1/25

Table 1: Density f(s, t)

ρ(·, t)
s
−4 3 4

ρ(·, H) 1 1 1
ρ(·,M) 2/7 1 13/14
ρ(·, L) 0 0 1

Table 2: Optimal privately IC mechanism

Table 2 gives the optimal privately IC mechanism. The row for type t gives this type’s

acceptance probabilities for different Sender’s types. Type H is indifferent between reporting

H and M , type M is indifferent between reporting M and L, and type L is indifferent between

accepting and not accepting when he receives an acceptance recommendation.

We now consider IC mechanisms. This example satisfies assumption 4, so cutoff mech-

anisms are sufficient. In table 3, the row for type t gives the probabilities that type t is

the cutoff type for different Senders’ types. In table 4, the row for type t gives this type’s

acceptance probabilities for different Sender’s types. Comparing table 2 and 4, we conclude

that the optimal privately IC mechanism gives Sender a strictly higher payoff. �

The following example shows that theorem 3.1 and corollary 5.1 may not hold without

assumption 2. (The example satisfies assumption 3.) This is basically because, if assumption
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t
s
−4 3 4

H 2/3 0 1/15
M 1/3 1 0
L 0 0 14/15

Table 3: Optimal IC mechanism

ρ(·, t)
s
−4 3 4

ρ(·, H) 1 1 1
ρ(·,M) 1/3 1 14/15
ρ(·, L) 0 0 14/15

Table 4: ρ(s, t) in optimal IC mechanism

2 fails, then the optimal IC mechanism needs not recommend acceptance on an interval even

when T is a singleton.

Example 4. Assume that S = {−2,−1, 1} and T = {L,H}. Receiver’s payoff and Sender’s

payoff from accepting are u(s, t) = s and v(s, t) = 1, respectively. Let Receiver’s and Sender’s

beliefs be given by the following density functions:

Receiver’s belief

−2 −1 1

H 1/10 2/10 2/10

L 4/12 1/12 1/12

Sender’s belief

−2 −1 1

H 8/20 4/20 4/20

L 2/20 1/20 1/20

Receiver’s belief satisfies the i.m.l.r. assumption, and Sender believes that Receiver’s type

and his own type are independent.

The unique optimal IC mechanism gives up on L and recommends that H accept if s is

either −2 or 1, and reject if s is −1. Thus, the optimal IC mechanism does not recommend

that H accept on an interval.

The unique optimal privately IC mechanism recommends that L accept if s is either −1

or 1, and reject if s is −2; it also recommends that H accept if s is either −2 or 1, and reject

if s is −1.

�
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